Download citation
Download citation
link to html
In the title compound, C15H7F5O2, an intra­molecular C—H...O hydrogen bond induces coplanarity of the central chain and the phenyl ring. An inter­molecular C—H...O hydrogen bond leads to the formation of a dimer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040389/is6158sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040389/is6158Isup2.hkl
Contains datablock I

CCDC reference: 296586

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.134
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for F1 - C11 .. 7.06 su
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 44 Perc. PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As part of a study of cinnamic acid reactivity towards pentafluorophenol versus pentafluorothiophenol, the title compound, (I), has been synthesized according to a literature method (Zhao et al.,1997). The regular geometry of the carbon skeleton of the phenyl ring (C4–C9) is slightly modified due to the substituent atom C3 (Fig. 1). The deformation can be attributed to hybridization and conjugation effects (Domenicano et al., 1975) and can be described in the following way: an endocyclic angle α [C5—C4—C9 118.4 (3)°] smaller than 120°, aromatic bonds adjacent to atom C4 [average of C4—C5 and C4—C9 1.386 (1) Å] longer than the neighboring ones [average of C5—C6 and C8—C9 1.380 (1) Å] and a significant shortening of the C3—C4 bond [1.459 (4) Å] compared to the reported Caromatic—Csp2 average value of 1.483 Å (Allen et al., 1987).

In the pentafluorophenyl group, the average Caromatic —Caromatic and Caromatic —F bond lengths agree very well with reported values (Allen et al., 1987), although there are significant differences among the several equivalent bonds (Table 1). These are probably due to significant librational motion of the pentafluorophenyl group, as shown by the shape of the displacement ellipsoids. Within the central chain, the C1O2 and C2C3 distances agree well with expected values; however, the C1—C2 [1.454 (4) Å] and C10—O1 [1.376 (4) Å] bonds are significantly shorter, and the C1—O1 [1.382 (4) Å] bond is significantly larger than reported values (Allen et al., 1987). All of these observed differences can be ascribed to the resonance effects of the two terminal aryl rings and the C2C3 double bond.

The molecule is characterized by an intramolecular C3—H3···O2 hydrogen bond (Table 2), which is responsible for the planarity of the plane C1–C10/O1/O2 including the central chain and the phenyl ring (maximum deviation 0.084 Å). The dihedral angle between this plane and theO1/C10–C15/F1–F5 plane (maximum deviation 0.0136 Å) is 62.89 (6)°. The crystal packing is stabilized by a weak intermolecular C3—H3···O2i hydrogen bond (symmetry code as Table 2), which leads to the formation of a centrosymmetric dimer.

Experimental top

The title compound was prepared according to the method reported by Zhao et al. (1997), treating 3-phenyl-2-propenoic acid with dicyclohexylcarbodiimide (DCC) and pentafluorophenol in anhydrous dioxane. The mixture was stirred at room temperature for 30 min and cooled. Then dicyclohexylurea was removed by filtration and the filtrate was purified by silica gel flash column chromatography (diethyl ether-petroleum ether 1:9), to provide the title compound as a crystalline product. Suitable crystals for X-ray diffraction were obtained from slow evaporation of a diethylether solution.

Refinement top

H atoms were refined as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The linear decay of the intensity with exposure time appears to be related to the crystal and not to the source.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek,1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson,1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
Pentafluorophenyl 3-phenylprop-2-enoate top
Crystal data top
C15H7F5O2F(000) = 632
Mr = 314.21Dx = 1.564 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.261 (5) Åθ = 7.4–12.5°
b = 15.1156 (17) ŵ = 0.15 mm1
c = 12.3823 (15) ÅT = 293 K
β = 101.01 (2)°Prism, colourless
V = 1334.0 (9) Å30.49 × 0.18 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.7°
Graphite monochromatorh = 48
ω–2θ scansk = 818
3210 measured reflectionsl = 1414
2463 independent reflections3 standard reflections every 200 reflections
1086 reflections with I > 2σ(I) intensity decay: 10.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.684P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
2463 reflectionsΔρmax = 0.24 e Å3
200 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0144 (19)
Crystal data top
C15H7F5O2V = 1334.0 (9) Å3
Mr = 314.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.261 (5) ŵ = 0.15 mm1
b = 15.1156 (17) ÅT = 293 K
c = 12.3823 (15) Å0.49 × 0.18 × 0.12 mm
β = 101.01 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
3210 measured reflections3 standard reflections every 200 reflections
2463 independent reflections intensity decay: 10.6%
1086 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2463 reflectionsΔρmin = 0.23 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.9933 (3)0.92412 (16)0.88055 (18)0.0725 (7)
O10.8168 (3)0.83009 (15)0.76496 (18)0.0709 (7)
C40.5828 (4)0.9144 (2)1.0904 (2)0.0522 (8)
C30.7180 (4)0.91439 (19)1.0171 (2)0.0522 (8)
H30.82600.94781.03980.063*
C20.7054 (4)0.8726 (2)0.9223 (2)0.0574 (8)
H20.60110.83760.89580.069*
C10.8541 (5)0.8811 (2)0.8592 (3)0.0567 (8)
C100.9514 (5)0.8319 (2)0.7005 (3)0.0657 (9)
F11.1644 (3)0.75371 (15)0.83151 (19)0.0959 (7)
C90.4050 (4)0.8781 (2)1.0607 (3)0.0609 (9)
H90.36820.85300.99130.073*
C121.2545 (6)0.7929 (3)0.6655 (4)0.0865 (13)
C80.2824 (5)0.8788 (2)1.1330 (3)0.0768 (11)
H80.16370.85391.11240.092*
F31.3388 (4)0.83172 (19)0.4998 (2)0.1425 (12)
C70.3344 (6)0.9159 (3)1.2352 (3)0.0875 (13)
H70.25170.91571.28410.105*
F50.7467 (4)0.91053 (17)0.56455 (18)0.1095 (8)
C111.1218 (6)0.7933 (3)0.7324 (3)0.0741 (10)
C50.6327 (5)0.9526 (2)1.1936 (3)0.0701 (10)
H50.75070.97801.21470.084*
C150.9116 (6)0.8717 (3)0.5989 (3)0.0771 (11)
C131.2088 (7)0.8321 (3)0.5646 (4)0.0942 (15)
C60.5088 (7)0.9533 (3)1.2654 (3)0.0884 (12)
H60.54370.97911.33450.106*
F21.4184 (3)0.7530 (2)0.7001 (2)0.1312 (11)
F40.9995 (4)0.90947 (19)0.4311 (2)0.1363 (11)
C141.0410 (7)0.8709 (3)0.5305 (3)0.0909 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0621 (15)0.0817 (17)0.0813 (16)0.0234 (13)0.0329 (12)0.0316 (13)
O10.0610 (15)0.0868 (17)0.0732 (15)0.0240 (12)0.0336 (12)0.0304 (13)
C40.051 (2)0.053 (2)0.055 (2)0.0062 (16)0.0167 (15)0.0080 (16)
C30.0457 (18)0.0516 (19)0.063 (2)0.0013 (15)0.0186 (15)0.0018 (16)
C20.050 (2)0.062 (2)0.064 (2)0.0035 (16)0.0211 (16)0.0037 (17)
C10.057 (2)0.056 (2)0.061 (2)0.0012 (18)0.0205 (16)0.0116 (17)
C100.059 (2)0.071 (2)0.074 (2)0.0192 (19)0.028 (2)0.0260 (19)
F10.0905 (16)0.0959 (16)0.0992 (17)0.0079 (13)0.0128 (13)0.0237 (14)
C90.056 (2)0.063 (2)0.067 (2)0.0027 (17)0.0201 (17)0.0099 (17)
C120.057 (3)0.096 (3)0.112 (4)0.015 (2)0.031 (2)0.054 (3)
C80.060 (2)0.079 (3)0.100 (3)0.0058 (19)0.037 (2)0.023 (2)
F30.125 (2)0.177 (3)0.157 (2)0.0570 (19)0.1058 (19)0.0681 (19)
C70.093 (3)0.101 (3)0.084 (3)0.023 (3)0.056 (3)0.030 (2)
F50.0962 (18)0.139 (2)0.0952 (17)0.0132 (16)0.0228 (14)0.0032 (14)
C110.070 (3)0.081 (3)0.071 (2)0.014 (2)0.015 (2)0.026 (2)
C50.070 (2)0.085 (3)0.059 (2)0.003 (2)0.0219 (18)0.001 (2)
C150.070 (3)0.088 (3)0.080 (3)0.014 (2)0.029 (2)0.021 (2)
C130.087 (3)0.106 (4)0.104 (4)0.038 (3)0.054 (3)0.046 (3)
C60.098 (3)0.109 (3)0.068 (2)0.017 (3)0.040 (2)0.005 (2)
F20.0646 (15)0.161 (2)0.172 (2)0.0020 (16)0.0328 (15)0.073 (2)
F40.176 (3)0.158 (3)0.0910 (18)0.030 (2)0.0650 (18)0.0034 (17)
C140.106 (4)0.101 (3)0.076 (3)0.024 (3)0.043 (3)0.025 (3)
Geometric parameters (Å, º) top
O2—C11.188 (4)C10—C111.356 (5)
O1—C101.376 (4)C10—C151.375 (5)
O1—C11.382 (4)C9—C81.379 (4)
C4—C51.385 (4)C9—H90.9300
C4—C91.387 (4)C11—C121.386 (5)
C4—C31.459 (4)C12—C131.366 (6)
C3—C21.321 (4)C8—C71.370 (5)
C3—H30.9300C8—H80.9300
C2—C11.454 (4)C7—C61.372 (5)
C2—H20.9300C7—H70.9300
F1—C111.347 (4)C5—C61.380 (5)
F2—C121.330 (5)C5—H50.9300
F3—C131.351 (4)C13—C141.345 (6)
F4—C141.344 (5)C14—C151.380 (5)
F5—C151.329 (4)C6—H60.9300
C10—O1—C1115.6 (2)C7—C8—H8119.8
C5—C4—C9118.4 (3)C9—C8—H8119.8
C5—C4—C3119.1 (3)C8—C7—C6119.9 (3)
C9—C4—C3122.5 (3)C8—C7—H7120.1
C2—C3—C4127.8 (3)C6—C7—H7120.1
C2—C3—H3116.1F1—C11—C10119.6 (3)
C4—C3—H3116.1F1—C11—C12118.5 (4)
C3—C2—C1120.2 (3)C10—C11—C12121.8 (4)
C3—C2—H2119.9C6—C5—C4120.6 (4)
C1—C2—H2119.9C6—C5—H5119.7
O2—C1—O1121.0 (3)C4—C5—H5119.7
O2—C1—C2128.1 (3)F5—C15—C10120.4 (3)
O1—C1—C2111.0 (3)F5—C15—C14119.0 (4)
C11—C10—C15118.4 (4)C10—C15—C14120.6 (4)
C11—C10—O1122.2 (4)C14—C13—F3120.7 (5)
C15—C10—O1119.4 (4)C14—C13—C12121.5 (4)
C8—C9—C4120.6 (3)F3—C13—C12117.8 (5)
C8—C9—H9119.7C7—C6—C5120.2 (4)
C4—C9—H9119.7C7—C6—H6119.9
F2—C12—C13122.5 (4)C5—C6—H6119.9
F2—C12—C11119.4 (5)F4—C14—C13120.5 (4)
C13—C12—C11118.0 (4)F4—C14—C15119.9 (5)
C7—C8—C9120.3 (4)C13—C14—C15119.6 (4)
C5—C4—C3—C2171.2 (3)C9—C4—C5—C60.8 (5)
C9—C4—C3—C29.2 (5)C3—C4—C5—C6179.5 (3)
C4—C3—C2—C1179.3 (3)C11—C10—C15—F5179.7 (3)
C10—O1—C1—O21.1 (5)O1—C10—C15—F52.1 (5)
C10—O1—C1—C2178.6 (3)C11—C10—C15—C141.2 (5)
C3—C2—C1—O21.6 (5)O1—C10—C15—C14177.0 (3)
C3—C2—C1—O1178.0 (3)F2—C12—C13—C14178.9 (4)
C1—O1—C10—C1170.2 (4)C11—C12—C13—C140.5 (6)
C1—O1—C10—C15111.6 (3)F2—C12—C13—F31.7 (6)
C5—C4—C9—C81.0 (5)C11—C12—C13—F3179.8 (3)
C3—C4—C9—C8179.3 (3)C8—C7—C6—C50.8 (6)
C4—C9—C8—C70.4 (5)C4—C5—C6—C70.1 (6)
C9—C8—C7—C60.6 (6)F3—C13—C14—F40.3 (6)
C15—C10—C11—F1179.9 (3)C12—C13—C14—F4179.7 (4)
O1—C10—C11—F11.7 (5)F3—C13—C14—C15179.0 (3)
C15—C10—C11—C120.3 (5)C12—C13—C14—C150.4 (6)
O1—C10—C11—C12177.8 (3)F5—C15—C14—F40.4 (6)
F2—C12—C11—F10.6 (5)C10—C15—C14—F4179.5 (3)
C13—C12—C11—F1179.1 (3)F5—C15—C14—C13179.7 (4)
F2—C12—C11—C10179.0 (3)C10—C15—C14—C131.2 (6)
C13—C12—C11—C100.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.532.858 (4)101
C3—H3···O2i0.932.443.308 (4)156
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC15H7F5O2
Mr314.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.261 (5), 15.1156 (17), 12.3823 (15)
β (°) 101.01 (2)
V3)1334.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.49 × 0.18 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3210, 2463, 1086
Rint0.025
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.02
No. of reflections2463
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, HELENA (Spek,1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson,1976), SHELXL97.

Selected bond lengths (Å) top
F1—C111.347 (4)C10—C151.375 (5)
F2—C121.330 (5)C11—C121.386 (5)
F3—C131.351 (4)C12—C131.366 (6)
F4—C141.344 (5)C13—C141.345 (6)
F5—C151.329 (4)C14—C151.380 (5)
C10—C111.356 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.532.858 (4)101
C3—H3···O2i0.932.443.308 (4)156
Symmetry code: (i) x+2, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds