Download citation
Download citation
link to html
In the title compound, C16H20N2S, an inter­molecular N—H...N hydrogen bond and an N—H...π inter­action link two mol­ecules, forming a dimer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680504050X/is6162sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680504050X/is6162Isup2.hkl
Contains datablock I

CCDC reference: 296589

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.100
  • Data-to-parameter ratio = 19.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT420_ALERT_2_C D-H Without Acceptor N2 - H3 ... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Various thiazole derivatives show herbicidal, anti-imflammatory, antimicrobial and antiparasitic activity (Koparir et al., 2004; Ahmedzade et al., 2003), and also liquid crystal properties (Coghi et al., 1976). Aminothiazoles have been extensively studied for a range of biological and industrial applications (Lynch et al., 1999; Toplak et al., 2003). 2-Amino-1,3-thiazole, the structure of which was reported by Caranoni & Reboul (1982), is itself listed as a thyroid inhibitor (Merck, 2001).

The title compound, (I), consists of aminothiazole, cyclobutane and benzene rings in the asymmetric unit (Fig. 1). The dihedral angle between the thiazole and benzene rings is 81.88 (9)°, comparable to 87.21 (2)° and 89.70 (2)° reported for 3-butyl-4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazole-2(3H)-thione (Kirilmiş et al., 2005a) and 3-cyclohexl-4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazole-2(3H)-thione (Kirilmiş et al., 2005b), respectively. The cyclobutane ring is puckered; the C5/C4/C6 plane forms a dihedral angle of 20.8 (2)° with the C6/C7/C5 plane. This compares well with the values of 24.37°, 23.82 (3)° and 23.5 (4)° reported for the above-mentioned compounds (Kirilmiş et al., 2005a,b) and hexafluorocyclobutane (Swenson et al., 1997), respectively. An intermolecular N2—H1···N1i hydrogen bond (symmetry code as Table 2) links the molecules, forming a hydrogen-bonded dimer of graph-set motif R22(8) (Fig. 2). Of greater interest is an intermolecular N—H···π interaction between the amino group and the benzene ring in the dimer (Table 2). As a result of these interactions, as well as van der Waals interactions, the molecules afford hexagonal cavities of diameter 3.774 Å along the c axis (Fig. 3).

Experimental top

To a solution of thiourea (0.76 g, 10 mmol) in absolute ethanol (50 ml), a solution of 3-(2-chloro-1-oxoethyl)-1-methyl-1-p-xylylcyclobutane (2.50 g, 10 mmol) in absolute ethanol (20 ml) was added dropwise at 323–327 K with continuous stirring. By monitoring the IR frequency of the carbonyl group of 3-(2-chloro-1-oxoethyl)-1-methyl-1-p-xylylcyclobutane, completion of the reaction was easily seen. After cooling to room temperature, the solution was made alkaline with an aqueous solution of NH3 (5%) to separate dark-green crystals of (I) from the reaction mixture. The precipitate was filtered off, washed with an aqueous ammonia solution and water several times, dried in air and recrystallized from water–ethanol (1:4) by slow evaporation (yield 76%; m.p. 407.5 K). Characteristic 1H NMR shifts (CDCl3, p.p.m.) are at 1.54 (s, 3H, –CH3 on cyclobutane), 2.22 (s, 3H, o-CH3 of p-xylyl), 2.33 (s, 3H, m-CH3 of p-xylyl), 2.48 (m, 2H, –CH2–), 2.59 (m, 2H, –CH2–), 3.43 (q, J = 9.2, 1H, >CH–), 5.55 (brs, 2H, NH2), 5.96 (s, 1H, aromatic in thiazole ring), 6.89 (s, 1H, aromatic), 7.03 (m, 2H, aromatic). Characteristic 13C NMR shifts (CDCl3, p.p.m.) are at 169.18, 155.84, 149.80, 135.57, 132.12, 131.43, 127.11, 126.85, 100.39, 41.89, 39.46, 31.09, 28.05, 21.29 and 19.71.

Refinement top

All H atoms, except for H1 and H3, were placed in calculated positions, with C—H distances in the range of 0.93–0.96 Å. Uiso(H) values were constrained to be 1.2 and 1.5 times Ueq of the carrier atom. Atoms H1 and H3 were located in a difference map and refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bonding interactions in (I). For the sake of clarity, H atoms bonded to C atoms have been omitted. Cg1 indicates the centroid of the C9–C14 phenyl ring [symmetry code: (i) 1/3 − x, 2/3 − y, 2/3 − z].
[Figure 3] Fig. 3. A view of the cavities along the c axis.
2-Amino-4-(3-methyl-3-p-xylylcyclobutyl)-1,3-thiazole top
Crystal data top
C16H20N2SDx = 1.198 Mg m3
Mr = 272.40Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 37485 reflections
Hall symbol: -R 3θ = 1.6–28.0°
a = 20.7083 (11) ŵ = 0.20 mm1
c = 18.2954 (10) ÅT = 293 K
V = 6794.6 (6) Å3Prism, pale yellow
Z = 180.57 × 0.48 × 0.38 mm
F(000) = 2628
Data collection top
Stoe IPDS-2
diffractometer
3557 independent reflections
Radiation source: fine-focus sealed tube2851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 6.67 pixels mm-1θmax = 27.8°, θmin = 2.0°
ω scansh = 2627
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2727
Tmin = 0.900, Tmax = 0.944l = 2323
37485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.0488P]
where P = (Fo2 + 2Fc2)/3
3557 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H20N2SZ = 18
Mr = 272.40Mo Kα radiation
Trigonal, R3µ = 0.20 mm1
a = 20.7083 (11) ÅT = 293 K
c = 18.2954 (10) Å0.57 × 0.48 × 0.38 mm
V = 6794.6 (6) Å3
Data collection top
Stoe IPDS-2
diffractometer
3557 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2851 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.944Rint = 0.068
37485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
3557 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25932 (2)0.54840 (2)0.33641 (2)0.05501 (13)
N10.17396 (6)0.41911 (6)0.28044 (6)0.0447 (3)
N20.21589 (9)0.41453 (9)0.39814 (8)0.0614 (4)
H10.1990 (10)0.3649 (12)0.3946 (10)0.070 (5)*
H30.2467 (12)0.4374 (12)0.4310 (12)0.080 (6)*
C10.21259 (7)0.45130 (7)0.33876 (7)0.0444 (3)
C20.22109 (8)0.54313 (8)0.25131 (8)0.0505 (3)
H20.22900.58410.22360.061*
C30.17828 (7)0.47172 (7)0.23059 (7)0.0433 (3)
C40.13665 (8)0.44482 (8)0.16036 (8)0.0496 (3)
H40.14120.48660.13110.060*
C50.05451 (8)0.38134 (8)0.16455 (8)0.0504 (3)
H5A0.01890.39720.15280.061*
H5B0.04180.35410.21030.061*
C60.15330 (9)0.39285 (9)0.11371 (8)0.0542 (4)
H6A0.17670.36980.14090.065*
H6B0.18090.41600.06940.065*
C70.06843 (8)0.34025 (8)0.10087 (7)0.0487 (3)
C80.04145 (12)0.35473 (11)0.02801 (9)0.0763 (5)
H8A0.06120.40730.02190.114*
H8B0.01200.32970.02780.114*
H8C0.05830.33620.01130.114*
C90.03804 (8)0.25747 (8)0.11130 (7)0.0485 (3)
C100.07154 (11)0.21950 (10)0.08047 (9)0.0639 (4)
C110.03975 (15)0.14373 (12)0.09615 (12)0.0825 (6)
H110.06150.11770.07660.099*
C120.02204 (14)0.10614 (11)0.13904 (13)0.0847 (7)
H120.04040.05590.14910.102*
C130.05775 (11)0.14182 (9)0.16776 (11)0.0703 (5)
C140.02614 (9)0.21744 (8)0.15293 (8)0.0547 (4)
H140.04910.24260.17180.066*
C150.12730 (14)0.10161 (13)0.21371 (16)0.1077 (9)
H15A0.16000.05350.19280.162*
H15B0.15220.13020.21520.162*
H15C0.11400.09550.26250.162*
C160.13958 (15)0.25620 (15)0.03211 (12)0.0963 (7)
H16A0.13360.28690.00350.144*
H16B0.14570.21860.00760.144*
H16C0.18280.28650.06140.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0562 (2)0.04338 (19)0.0560 (2)0.01788 (16)0.00695 (16)0.00782 (15)
N10.0511 (6)0.0408 (6)0.0414 (6)0.0224 (5)0.0048 (5)0.0006 (4)
N20.0799 (10)0.0547 (8)0.0478 (7)0.0322 (7)0.0201 (7)0.0042 (6)
C10.0459 (7)0.0459 (7)0.0437 (7)0.0246 (6)0.0030 (5)0.0033 (5)
C20.0553 (8)0.0406 (7)0.0528 (8)0.0219 (6)0.0010 (6)0.0030 (6)
C30.0458 (7)0.0406 (6)0.0441 (7)0.0222 (6)0.0010 (5)0.0033 (5)
C40.0592 (8)0.0432 (7)0.0451 (7)0.0246 (6)0.0062 (6)0.0045 (5)
C50.0511 (8)0.0500 (7)0.0557 (8)0.0293 (6)0.0088 (6)0.0044 (6)
C60.0560 (8)0.0598 (9)0.0404 (7)0.0241 (7)0.0026 (6)0.0008 (6)
C70.0577 (8)0.0501 (7)0.0389 (7)0.0274 (6)0.0089 (6)0.0000 (5)
C80.1013 (14)0.0712 (11)0.0536 (10)0.0411 (11)0.0256 (9)0.0046 (8)
C90.0586 (8)0.0514 (7)0.0398 (7)0.0306 (7)0.0160 (6)0.0068 (6)
C100.0848 (12)0.0707 (10)0.0504 (9)0.0496 (9)0.0186 (8)0.0175 (7)
C110.1182 (18)0.0758 (12)0.0792 (13)0.0677 (13)0.0335 (13)0.0260 (11)
C120.1106 (17)0.0489 (9)0.0940 (15)0.0394 (11)0.0410 (13)0.0104 (10)
C130.0725 (11)0.0512 (9)0.0754 (11)0.0220 (8)0.0273 (9)0.0033 (8)
C140.0576 (8)0.0502 (8)0.0567 (9)0.0272 (7)0.0173 (7)0.0025 (6)
C150.0876 (15)0.0721 (13)0.132 (2)0.0160 (12)0.0090 (14)0.0310 (14)
C160.1172 (18)0.1190 (18)0.0745 (13)0.0753 (16)0.0091 (12)0.0251 (13)
Geometric parameters (Å, º) top
S1—C21.7251 (16)C8—H8A0.9600
S1—C11.7424 (14)C8—H8B0.9600
N1—C11.2998 (17)C8—H8C0.9600
N1—C31.3890 (16)C9—C141.390 (2)
N2—C11.3478 (19)C9—C101.401 (2)
N2—H10.91 (2)C10—C111.395 (3)
N2—H30.83 (2)C10—C161.508 (3)
C2—C31.3436 (19)C11—C121.365 (3)
C2—H20.9300C11—H110.9300
C3—C41.4914 (19)C12—C131.384 (3)
C4—C61.542 (2)C12—H120.9300
C4—C51.546 (2)C13—C141.389 (2)
C4—H40.9800C13—C151.508 (3)
C5—C71.552 (2)C14—H140.9300
C5—H5A0.9700C15—H15A0.9600
C5—H5B0.9700C15—H15B0.9600
C6—C71.554 (2)C15—H15C0.9600
C6—H6A0.9700C16—H16A0.9600
C6—H6B0.9700C16—H16B0.9600
C7—C91.514 (2)C16—H16C0.9600
C7—C81.532 (2)
C2—S1—C188.67 (7)C5—C7—C687.55 (10)
C1—N1—C3110.80 (11)C7—C8—H8A109.5
C1—N2—H1118.8 (12)C7—C8—H8B109.5
C1—N2—H3120.2 (15)H8A—C8—H8B109.5
H1—N2—H3116.6 (19)C7—C8—H8C109.5
N1—C1—N2124.34 (13)H8A—C8—H8C109.5
N1—C1—S1114.56 (10)H8B—C8—H8C109.5
N2—C1—S1121.07 (11)C14—C9—C10118.69 (15)
C3—C2—S1110.72 (11)C14—C9—C7118.46 (13)
C3—C2—H2124.6C10—C9—C7122.84 (15)
S1—C2—H2124.6C11—C10—C9117.44 (18)
C2—C3—N1115.23 (12)C11—C10—C16118.96 (18)
C2—C3—C4126.46 (12)C9—C10—C16123.60 (17)
N1—C3—C4118.31 (11)C12—C11—C10122.72 (19)
C3—C4—C6116.64 (12)C12—C11—H11118.6
C3—C4—C5117.36 (12)C10—C11—H11118.6
C6—C4—C588.22 (11)C11—C12—C13120.83 (18)
C3—C4—H4110.9C11—C12—H12119.6
C6—C4—H4110.9C13—C12—H12119.6
C5—C4—H4110.9C12—C13—C14116.84 (19)
C4—C5—C790.11 (11)C12—C13—C15122.30 (19)
C4—C5—H5A113.6C14—C13—C15120.9 (2)
C7—C5—H5A113.6C13—C14—C9123.39 (16)
C4—C5—H5B113.6C13—C14—H14118.3
C7—C5—H5B113.6C9—C14—H14118.3
H5A—C5—H5B110.9C13—C15—H15A109.5
C4—C6—C790.21 (11)C13—C15—H15B109.5
C4—C6—H6A113.6H15A—C15—H15B109.5
C7—C6—H6A113.6C13—C15—H15C109.5
C4—C6—H6B113.6H15A—C15—H15C109.5
C7—C6—H6B113.6H15B—C15—H15C109.5
H6A—C6—H6B110.9C10—C16—H16A109.5
C9—C7—C8110.21 (12)C10—C16—H16B109.5
C9—C7—C5116.10 (12)H16A—C16—H16B109.5
C8—C7—C5111.09 (13)C10—C16—H16C109.5
C9—C7—C6117.31 (12)H16A—C16—H16C109.5
C8—C7—C6112.93 (14)H16B—C16—H16C109.5
C3—N1—C1—N2176.49 (14)C4—C6—C7—C897.03 (14)
C3—N1—C1—S11.65 (15)C4—C6—C7—C514.86 (11)
C2—S1—C1—N11.46 (12)C8—C7—C9—C1496.63 (16)
C2—S1—C1—N2176.75 (13)C5—C7—C9—C1430.77 (17)
C1—S1—C2—C30.81 (12)C6—C7—C9—C14132.27 (14)
S1—C2—C3—N10.08 (16)C8—C7—C9—C1082.97 (18)
S1—C2—C3—C4179.38 (12)C5—C7—C9—C10149.63 (13)
C1—N1—C3—C21.01 (17)C6—C7—C9—C1048.13 (18)
C1—N1—C3—C4179.48 (12)C14—C9—C10—C112.6 (2)
C2—C3—C4—C6124.11 (15)C7—C9—C10—C11177.81 (14)
N1—C3—C4—C655.34 (17)C14—C9—C10—C16177.71 (16)
C2—C3—C4—C5133.16 (15)C7—C9—C10—C161.9 (2)
N1—C3—C4—C547.39 (18)C9—C10—C11—C120.7 (3)
C3—C4—C5—C7134.21 (12)C16—C10—C11—C12179.61 (19)
C6—C4—C5—C714.93 (11)C10—C11—C12—C131.8 (3)
C3—C4—C6—C7134.83 (12)C11—C12—C13—C142.2 (3)
C5—C4—C6—C714.91 (11)C11—C12—C13—C15178.4 (2)
C4—C5—C7—C9134.18 (12)C12—C13—C14—C90.2 (2)
C4—C5—C7—C898.86 (14)C15—C13—C14—C9179.65 (17)
C4—C5—C7—C614.82 (11)C10—C9—C14—C132.2 (2)
C4—C6—C7—C9133.13 (12)C7—C9—C14—C13178.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.91 (2)2.15 (2)3.0540 (19)180 (2)
N2—H3···Cg1i0.83 (2)2.453 (3)3.307 (2)167 (2)
Symmetry code: (i) x+1/3, y+2/3, z+2/3.

Experimental details

Crystal data
Chemical formulaC16H20N2S
Mr272.40
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)20.7083 (11), 18.2954 (10)
V3)6794.6 (6)
Z18
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.57 × 0.48 × 0.38
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.900, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
37485, 3557, 2851
Rint0.068
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.05
No. of reflections3557
No. of parameters182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C21.7251 (16)N1—C31.3890 (16)
S1—C11.7424 (14)C2—C31.3436 (19)
N1—C11.2998 (17)C3—C41.4914 (19)
N1—C1—N2124.34 (13)C3—C4—C5117.36 (12)
N1—C1—S1114.56 (10)C9—C7—C5116.10 (12)
C2—C3—C4—C6124.11 (15)C2—C3—C4—C5133.16 (15)
N1—C3—C4—C655.34 (17)N1—C3—C4—C547.39 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.91 (2)2.15 (2)3.0540 (19)180 (2)
N2—H3···Cg1i0.83 (2)2.453 (3)3.307 (2)167 (2)
Symmetry code: (i) x+1/3, y+2/3, z+2/3.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds