organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-benzyl-1-benz­yl­oxy-6a-methyl-1,2,3,3a,4,6a-hexa­hydro­cyclo­penta[b]pyrrole-3a-carboxyl­ate: hydrogen-bonded R44(24) sheets

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland., bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cDepartamento de Química, Universidad del Valle, AA 25360 Cali, Colombia
*Correspondence e-mail: che562@abdn.ac.uk

(Received 30 November 2005; accepted 6 December 2005; online 10 December 2005)

In the title crystal structure, C24H27NO3, mol­ecules are linked by two C–H⋯O hydrogen bonds into R44(24) sheets.

Comment

Pyrrolidine-containing derivatives are present in a large number of biologically active natural products and numerous therapeutic agents. Radical cyclizations have emerged as a useful synthetic tool and have been reported in the synthesis of alkaloids and related pyrrolidinic compounds via the generation and trapping of nitro­gen-centred radicals e.g. aminyl, iminyl, amidyl radicals etc. (Esker & Newcomb, 1993[Esker, J. L. & Newcomb, M. (1993). Adv. Heterocycl. Chem. 58, 1-45.]; Fallis & Brinza, 1997[Fallis, A. G. & Brinza, I. M. (1997). Tetrahedron, 53, 17543-17594.]; Bowman et al. 1996[Bowman, W. R., Stephenson, P. T. & Young, A. R. (1996). Tetrahedron, 52, 11445-11462.]; Guindon et al., 2001[Guindon, I., Guérin, B. & Landry, S. R. (2001). Org. Lett. 3, 2293-2296.]) However, no reports about the capture of neutral alk­yl–oxyaminyl radicals by a multiple function have been published up to date for the preparation of fused pyrrolidine derivatives. We describe here a fused pyrrolidine derivative, (I)[link], prepared for the first time via an alk­yl–oxyaminyl radical, which has been generated through the reductive inter­molecular or intra­molecular addition of carbon radicals to the carbon atom of oxime ethers (Friestad, 2001[Friestad, G. K. (2001). Tetrahedron, 57, 5461-5496.]; Naito et al., 2000[Naito, T., Miyabe, H., Ueda, M., Yoshioka, N. & Yamakawa, K. (2000). Tetrahedron, 56, 2413-2420.]; Tauh & Fallis, 1999[Tauh, T. & Fallis, A. G. (1999). J. Org. Chem. 64, 6960-6968.]; Marco-Contelles et al., 1996[Marco-Contelles, J., Destabel, C., Gallego, P., Chiara, J. L. & Bernabe, M. (1996). J. Org. Chem. 61, 1354-1362.]; Enholm et al., 1990[Enholm, E., Jaramillo, L. M., Burroff, J. (1990). Tetrahedron Lett. 31, 3727-3730.]). We carried out this reaction from methyl 2-[(E)-1-(benzyl­oxyimino)eth­yl]-5-bromo-2-cinnamylpent-4-enoate by a double bond in a cascade process yielding the title compound, (I). This reaction involves two sequential 5-exo ring closures involving vinyl and neutral alk­yl–oxyaminyl radicals, in a chain radical reaction, in which the attack of the radical is stereo-controlled by the carboxy­methyl group, and hence determining the stereochemistry of the new bonds on the opposite face to that group.

[Scheme 1]

The title mol­ecule, (I)[link], is shown in Fig. 1[link]. There are no unusual bonds lengths or angles in the structure. The puckering of the two five-membered rings N1/C2/C3/C3A/C6A and C3A/C4/C5/C6/C6A as defined by the pseudorotation parameters P and τ(M) (Rao et al., 1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]), are, for the former, P = 182.4 (1)°, τ(M) = 48.6 (1)°, reference bond N1—C2, corresponding to a twist on N1—C2 and, for the latter, P = 340.4 (6)°, τ(M) = 12.2 (1)°, reference bond C3A—C4, corresponding to an envelope on C3A.

Two C—H⋯O hydrogen bonds are involved in the supramolecular stucture (Table 1[link]). C5—H5⋯O1([{1\over 2}] + x, [{1\over 2}]y, 1 − z) forms a C(6) chain (Fig. 2[link]) (Bernstein et al., 1995[Bernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Engl. 34, 1555-1573.]) and C27—H27B⋯O32A forms a C(7) chain (Fig. 3[link]), both of which run parallel to the a axis. The latter hydrogen bond links anti­parallel C6 chains of the former type into a sheet consisting of a network of R44(24) rings which lies parallel to (010) (Fig. 4[link]). Atom C5 is a hydrogen donor to O1 in the mol­ecule at ([{1\over 2}] + x, [{1\over 2}]y, 1 − z), atom C2a in this mol­ecule is a hydrogen donor to O1 in the mol­ecule at (x, [{1\over 2}]y, −[{1\over 2}]z), C27 in this mol­ecule is a hydrogen donor to O32A in the mol­ecule at (−[{1\over 2}] + x, [{1\over 2}]y, 1 − z), while C5 is a hydrogen donor to O32A in the mol­ecule at (x, y, z). Two such sheets occur in the unit cell; one in the range 0.0 > y > 0.5 and 0.5 > y > 1.0. There are no inter­actions between adjacent sheets, C—H⋯π or ππ inter­actions being absent.

[Figure 1]
Figure 1
A view of (I), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the C6 chain formed by the C—H⋯O hydrogen bonds (dashed lines). The atoms labelled with and asterisk (*) and hash (#) are related by the symmetry operators ([{1\over 2}] + x, [{1\over 2}]y, 1 − z) and (−[{1\over 2}] + x, [{1\over 2}]y, 1 − z), respectively.
[Figure 3]
Figure 3
A view of the C(7) chain formed by the C—H⋯O hydrogen bonds (dashed lines). The atoms labelled asterisk (*) and hash (#) are related by the symmetry operators (−[{1\over 2}] + x, y, [{3\over 2}]z) and ([{1\over 2}] + x, y, [{3\over 2}]z), respectively.
[Figure 4]
Figure 4
A stereoview of the (010) sheet showing the C6 and C8 chains and the R44(24) rings. Hydrogen bonds are shown as dashed lines

Experimental

A solution of methyl 2-[(E)-1-(benzyl­oxyimino)eth­yl]-5-bromo-2-cinnamylpent-4-enoate (350 mg, 0.77 mmol), 2,2′-azobisisobutyro­nitrile (39 mg, 0.23 mmol) and tributyl­tin hydride (0.26 ml, 0.92 mmol) in cyclo­hexane (39 ml) was degassed for 1 h by bubbling dry argon, and subsequently stirred at 353 K for 6–8 h. After cooling to room temperature the solution was evaporated under low pressure to dryness. Purification of the crude mixture by flash column chromatography with 5% (v/v) AcOEt/hexa­nes yielded a white solid (63 mg, 22% yield) mp 355 K. HRMS (EI) calcd for C24H27NO3 377.19909, found 377.19907. The solid was recrystallized from ethanol producing white crystals suitable for X-ray analysis.

Crystal data
  • C24H27NO3

  • Mr = 377.47

  • Orthorhombic, P b c a

  • a = 8.8410 (17) Å

  • b = 20.584 (4) Å

  • c = 22.344 (2) Å

  • V = 4066.2 (12) Å3

  • Z = 8

  • Dx = 1.233 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4921 reflections

  • θ = 6.4–28.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.38 × 0.33 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φω scans

  • Absorption correction: multi-scan[SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003) SADABS. Bruker-Nonius, Delft, The Netherlands.]) and EVALCCD (Duisenberg et al., 2003[Duisenberg, A, J., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.])]Tmin = 0.970, Tmax = 0.990

  • 48795 measured reflections

  • 4921 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 28.5°

  • h = −11 → 11

  • k = −26 → 26

  • l = −29 → 27

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.109

  • S = 1.11

  • 4921 reflections

  • 255 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0174P)2 + 3.2146P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.51 3.444 (2) 169
C27—H27B⋯O32Aii 0.99 2.59 3.548 (2) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

H atoms were treated as riding atoms, with aromatic C—H = 0.95 Å, CH2 C—H = 0.99 Å, both with Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A, J., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A, J., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.] and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Pyrrolidine-containing derivatives are present in a large number of biologically active natural products and numerous therapeutic agents. Radical cyclizations have emerged as a useful synthetic tool and have been reported in the synthesis of alkaloids and related pyrrolidinic compounds via generation and trapping of nitrogen-centered radicals e.g. aminyl, iminyl, amidyl radicals etc. (Esker & Newcomb, 1993; Fallis & Brinza, 1997; Bowman et al. 1996; Guindon et al., 2001) However, no reports about the capture of neutral alkyl–oxyaminyl radicals by a multiple function have been published up to date for the preparation of fused pyrrolidine derivatives. We describe here a fused pyrrolidine derivative, (I), prepared for the first time via an alkyl–oxyaminyl radical, which has been generated through the reductive intermolecular or intramolecular addition of carbon radicals to the carbon atom of oxime ethers (Friestad, 2001; Naito et al., 2000; Tauh & Fallis, 1999; Marco-Contelles et al., 1996; Enholm et al., 1990). We carried out this reaction by the intramolecular capture of an alkyl-oxyaminyl radical by a double bond in a cascade process yielding methyl 2-[(E)-1-(benzyloxyimino)ethyl]-5-bromo-2-cinnamylpent-4-enoate. This reaction involves two sequential 5-exo ring closures involving vinyl and neutral alkyl–oxyaminyl radicals, in a chain radical reaction, in which the attack of the radical is stereo-controlled by the the carboxymethyl group, and hence determining the stereochemistry of the new stereogenic bonds on the opposite face to that group.

The title molecule is shown in Fig. 1. There are no unusual bonds lengths or angles in the structure. The puckering of the two five-membered rings N1/C2/C3/C3A/C6A and C3A/C4/C5/C6/C6A as defined by the pseudorotation parameters P and τ(M), (Rao et al., 1981) are, for the former; P = 182.4 (1)°, τ(M) = 48.6 (1)°, reference bond N1—C2, corresponding to a twist on N1—C2 and for the latter; P = 340.4 (6)°, τ(M) = 12.2 (1)°, reference bond C3A—C4, corresponding to an envelope on C3A.

Two C—H···O hydrogen bonds are involved in the supramolecular stucture (Table 1). C5—H5···O1(1/2 + x, 1/2 − y, 1 − z) forms a C(6) chain (Fig. 2) (Bernstein et al., 1995) and C27—H27B···O32A forms aC(7) chain (Fig. 3), both of which run parallel to the a axis. The latter hydrogen bond links antiparallelC6 chains of the former type into a sheet consisting of a network of R44(24) rings which lies parallel to (010) (Fig 4). Atom C5 is a hydrogen donor to O1 in the molecule at (1/2 + x, 1/2 − y, 1 − z), Atom C27 in this molecule is a hydrogen donor to O1 in the molecule at (x, 1/2 − y, −1/2 − z), C27 in this molecule is a hydrogen donor to O32A in the molecule at (−1/2 + x, 1/2 − y, 1 − z), while C5 is a hydrogen donor to O32A in the molecule at (x, y, z). Two such sheets occur in the unit cell; one in the range 0.0 > y > 0.5 and 0.5 > y > 1.0. There are no interactions between adjacent sheets, C—H···π or ππ interactions being absent.

Experimental top

A solution of methyl 2-[(E)-1-(benzyloxyimino)ethyl]-5-bromo-2-cinnamylpent-4-enoate (350 mg, 0.77 mmol), 2,2'-azobisisobutironitrile (39 mg, 0.23 mmol) and tributyltin hydride (0.26 ml, 0.92 mmol) in cyclohexane (39 ml) was degassed for 1 h by bubbling dry argon, and subsequently stirred at 353 K for 6–8 h. After cooling to room temperature the solution was evaporated under low pressure to dryness. Purification of the crude mixture by flash column chromatography with 5% (v/v) AcOEt/hexanes yielded a white solid (63 mg, 22% yield) mp 355 K. HRMS (EI) calcd for C24H27NO3 377.19909, found 377.19907. The solid was recrystallized from hexanes producing white crystals suitable for X-ray analysis.

Refinement top

H atoms were treated as riding atoms, with aromatic C—H = 0.95 Å, CH2 C—H = 0.99 Å, both with Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL (McArdle, 2003 and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of (1), showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the C6 chain formed by the C—H···O hydrogen bonds (dashed lines). The atoms labelled with and asterisk (*) and hash (#) are related by the symmetry operators (1/2 + x, 1/2 − y, 1 − z) and (−1/2 + x, 1/2 − y, 1 − z), respectively.
[Figure 3] Fig. 3. A view of the C(7) chain formed by the C—H···O hydrogen bonds (dashed lines). The atoms labelled asterisk (*) and hash (#) are related by the symmetry operators (−1/2 + x, y, 1.5 − z) and (1/2 + x, y, 1.5 − z), respectively.
[Figure 4] Fig. 4. A stereoview of the (010) sheet showing the C6 andC8 chains and the R44(24) rings. Hydrogen bonds are shown as dashed lines
Methyl 2-benzyl-1-benzyloxy-6a-methyl-1,2,3,3a,4,6a-hexahydro- 1-azapentalene-3a-carboxylate top
Crystal data top
C24H27NO3Dx = 1.233 Mg m3
Mr = 377.47Melting point: 355 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4921 reflections
a = 8.8410 (17) Åθ = 6.4–28.5°
b = 20.584 (4) ŵ = 0.08 mm1
c = 22.344 (2) ÅT = 120 K
V = 4066.2 (12) Å3Plate, colourless
Z = 80.38 × 0.33 × 0.12 mm
F(000) = 1616
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4921 independent reflections
Radiation source: fine-focus sealed tube3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕω scansθmax = 28.5°, θmin = 6.4°
Absorption correction: multi-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
h = 1111
Tmin = 0.970, Tmax = 0.990k = 2626
48795 measured reflectionsl = 2927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0174P)2 + 3.2146P]
where P = (Fo2 + 2Fc2)/3
4921 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H27NO3V = 4066.2 (12) Å3
Mr = 377.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8410 (17) ŵ = 0.08 mm1
b = 20.584 (4) ÅT = 120 K
c = 22.344 (2) Å0.38 × 0.33 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4921 independent reflections
Absorption correction: multi-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
3477 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.990Rint = 0.041
48795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.11Δρmax = 0.36 e Å3
4921 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Experimental. The Tmin and Tmax values reported are those calculated from the SHELX SIZE command. The ratio of experimental transmission factors from SADABS is 0.239891

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34560 (14)0.15468 (6)0.61087 (5)0.0175 (3)
O10.25222 (12)0.14741 (5)0.55813 (5)0.0203 (2)
C170.15344 (18)0.09243 (8)0.56498 (7)0.0227 (3)
C110.07975 (17)0.08382 (7)0.50510 (7)0.0207 (3)
C120.15277 (19)0.05002 (8)0.46007 (8)0.0276 (4)
C130.0873 (2)0.04383 (10)0.40405 (8)0.0399 (5)
C140.0513 (3)0.07179 (10)0.39271 (9)0.0470 (6)
C150.1252 (2)0.10536 (10)0.43739 (11)0.0447 (5)
C160.06004 (19)0.11148 (8)0.49326 (9)0.0322 (4)
C20.32646 (16)0.22132 (7)0.63345 (7)0.0178 (3)
C270.17335 (17)0.22926 (7)0.66419 (7)0.0219 (3)
C210.13840 (17)0.29887 (7)0.68005 (7)0.0192 (3)
C220.04210 (18)0.33563 (8)0.64441 (7)0.0228 (3)
C230.01202 (19)0.40019 (9)0.65715 (8)0.0303 (4)
C240.0776 (2)0.42919 (9)0.70642 (9)0.0351 (4)
C250.1720 (2)0.39336 (9)0.74298 (9)0.0332 (4)
C260.20282 (18)0.32876 (8)0.72997 (7)0.0255 (4)
C30.46432 (17)0.22611 (8)0.67422 (7)0.0223 (3)
C3A0.59306 (17)0.19107 (8)0.63972 (7)0.0210 (3)
C31A0.68804 (18)0.14638 (8)0.67829 (8)0.0257 (4)
O31A0.82136 (14)0.13675 (7)0.67205 (7)0.0465 (4)
O32A0.60534 (14)0.11550 (6)0.71958 (5)0.0293 (3)
C32A0.6850 (3)0.06932 (9)0.75659 (9)0.0434 (5)
C40.6937 (2)0.23914 (9)0.60414 (9)0.0342 (4)
C50.6389 (2)0.23438 (9)0.54132 (9)0.0334 (4)
C60.53930 (19)0.18767 (9)0.53393 (8)0.0285 (4)
C6A0.50606 (17)0.15025 (8)0.59043 (7)0.0192 (3)
C61A0.54885 (19)0.07899 (8)0.58369 (8)0.0277 (4)
H17A0.07670.10090.59630.027*
H17B0.21170.05320.57610.027*
H120.24870.03090.46760.033*
H130.13790.02030.37350.048*
H140.09580.06800.35420.056*
H150.22130.12430.42970.054*
H160.11140.13480.52380.039*
H20.33580.25310.59980.021*
H27A0.09310.21250.63740.026*
H27B0.17220.20270.70110.026*
H220.00410.31600.61050.027*
H230.05360.42450.63200.036*
H240.05790.47360.71510.042*
H250.21620.41300.77720.040*
H260.26840.30470.75530.031*
H3A0.44470.20450.71300.027*
H3B0.49100.27210.68180.027*
H32A0.72290.03370.73160.065*
H32B0.61600.05190.78690.065*
H32C0.77020.09100.77630.065*
H4A0.68170.28390.61960.041*
H4B0.80160.22660.60690.041*
H50.67240.26210.51000.040*
H60.49270.17840.49660.034*
H61A0.52360.05560.62060.041*
H61B0.65770.07540.57600.041*
H61C0.49280.06000.55010.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (6)0.0182 (7)0.0165 (6)0.0012 (5)0.0025 (5)0.0002 (5)
O10.0219 (5)0.0197 (6)0.0193 (5)0.0041 (4)0.0061 (5)0.0007 (4)
C170.0247 (8)0.0193 (8)0.0241 (8)0.0045 (6)0.0004 (7)0.0007 (6)
C110.0206 (8)0.0161 (8)0.0254 (8)0.0040 (6)0.0029 (6)0.0010 (6)
C120.0251 (8)0.0281 (9)0.0295 (9)0.0037 (7)0.0002 (7)0.0024 (7)
C130.0526 (12)0.0421 (11)0.0251 (9)0.0177 (10)0.0004 (9)0.0054 (8)
C140.0621 (14)0.0423 (12)0.0366 (11)0.0256 (11)0.0275 (11)0.0143 (10)
C150.0361 (11)0.0311 (11)0.0670 (15)0.0054 (9)0.0284 (11)0.0132 (10)
C160.0256 (9)0.0221 (9)0.0488 (11)0.0010 (7)0.0056 (8)0.0010 (8)
C20.0183 (7)0.0142 (7)0.0209 (8)0.0009 (6)0.0004 (6)0.0012 (6)
C270.0193 (8)0.0186 (8)0.0277 (8)0.0018 (6)0.0040 (6)0.0014 (7)
C210.0145 (7)0.0204 (8)0.0229 (8)0.0018 (6)0.0074 (6)0.0011 (6)
C220.0185 (7)0.0260 (9)0.0238 (8)0.0021 (6)0.0031 (6)0.0004 (7)
C230.0215 (8)0.0254 (9)0.0440 (11)0.0044 (7)0.0025 (8)0.0060 (8)
C240.0245 (9)0.0237 (9)0.0573 (12)0.0026 (7)0.0066 (9)0.0105 (9)
C250.0263 (9)0.0353 (10)0.0380 (10)0.0031 (8)0.0017 (8)0.0159 (8)
C260.0201 (8)0.0305 (9)0.0259 (8)0.0019 (7)0.0006 (7)0.0015 (7)
C30.0208 (8)0.0216 (9)0.0245 (8)0.0030 (6)0.0029 (7)0.0054 (7)
C3A0.0191 (7)0.0179 (8)0.0260 (8)0.0017 (6)0.0004 (6)0.0004 (6)
C31A0.0213 (8)0.0267 (9)0.0290 (9)0.0026 (7)0.0072 (7)0.0069 (7)
O31A0.0217 (7)0.0610 (10)0.0567 (9)0.0125 (6)0.0081 (6)0.0013 (7)
O32A0.0356 (7)0.0253 (6)0.0270 (6)0.0038 (5)0.0079 (5)0.0021 (5)
C32A0.0662 (14)0.0262 (10)0.0380 (11)0.0072 (10)0.0269 (10)0.0011 (8)
C40.0307 (9)0.0247 (9)0.0473 (11)0.0084 (7)0.0099 (8)0.0009 (8)
C50.0294 (9)0.0318 (10)0.0389 (10)0.0067 (8)0.0146 (8)0.0131 (8)
C60.0255 (9)0.0388 (10)0.0212 (8)0.0075 (8)0.0051 (7)0.0056 (7)
C6A0.0185 (7)0.0204 (8)0.0187 (7)0.0015 (6)0.0006 (6)0.0005 (6)
C61A0.0260 (8)0.0248 (9)0.0322 (9)0.0051 (7)0.0036 (7)0.0079 (7)
Geometric parameters (Å, º) top
N1—O11.4466 (15)C23—H230.95
N1—C21.4713 (19)C24—C251.382 (3)
N1—C6A1.4931 (19)C24—H240.95
O1—C171.4377 (18)C25—C261.388 (2)
C17—C111.499 (2)C25—H250.95
C17—H17A0.99C26—H260.95
C17—H17B0.99C3—C3A1.552 (2)
C11—C121.383 (2)C3—H3A0.99
C11—C161.386 (2)C3—H3B0.99
C12—C131.385 (3)C3A—C31A1.515 (2)
C12—H120.95C3A—C41.550 (2)
C13—C141.377 (3)C3A—C6A1.584 (2)
C13—H130.95C31A—O31A1.203 (2)
C14—C151.379 (3)C31A—O32A1.338 (2)
C14—H140.95O32A—C32A1.444 (2)
C15—C161.381 (3)C32A—H32A0.98
C15—H150.95C32A—H32B0.98
C16—H160.95C32A—H32C0.98
C2—C31.525 (2)C4—C51.488 (3)
C2—C271.527 (2)C4—H4A0.99
C2—H21.00C4—H4B0.99
C27—C211.508 (2)C5—C61.314 (3)
C27—H27A0.99C5—H50.95
C27—H27B0.99C6—C6A1.508 (2)
C21—C221.390 (2)C6—H60.95
C21—C261.395 (2)C6A—C61A1.522 (2)
C22—C231.385 (2)C61A—H61A0.98
C22—H220.95C61A—H61B0.98
C23—C241.380 (3)C61A—H61C0.98
O1—N1—C2108.07 (11)C24—C25—C26120.40 (17)
O1—N1—C6A106.66 (11)C24—C25—H25119.8
C2—N1—C6A105.73 (12)C26—C25—H25119.8
C17—O1—N1109.96 (11)C25—C26—C21120.64 (16)
O1—C17—C11105.19 (12)C25—C26—H26119.7
O1—C17—H17A110.7C21—C26—H26119.7
C11—C17—H17A110.7C2—C3—C3A105.04 (12)
O1—C17—H17B110.7C2—C3—H3A110.7
C11—C17—H17B110.7C3A—C3—H3A110.7
H17A—C17—H17B108.8C2—C3—H3B110.7
C12—C11—C16118.94 (16)C3A—C3—H3B110.7
C12—C11—C17120.39 (15)H3A—C3—H3B108.8
C16—C11—C17120.63 (15)C31A—C3A—C4111.19 (14)
C11—C12—C13120.56 (17)C31A—C3A—C3113.96 (13)
C11—C12—H12119.7C4—C3A—C3112.26 (13)
C13—C12—H12119.7C31A—C3A—C6A110.03 (13)
C14—C13—C12119.99 (19)C4—C3A—C6A105.10 (13)
C14—C13—H13120.0C3—C3A—C6A103.63 (12)
C12—C13—H13120.0O31A—C31A—O32A122.47 (17)
C13—C14—C15119.87 (18)O31A—C31A—C3A125.26 (17)
C13—C14—H14120.1O32A—C31A—C3A112.21 (13)
C15—C14—H14120.1C31A—O32A—C32A116.18 (15)
C14—C15—C16120.15 (19)O32A—C32A—H32A109.5
C14—C15—H15119.9O32A—C32A—H32B109.5
C16—C15—H15119.9H32A—C32A—H32B109.5
C15—C16—C11120.48 (18)O32A—C32A—H32C109.5
C15—C16—H16119.8H32A—C32A—H32C109.5
C11—C16—H16119.8H32B—C32A—H32C109.5
N1—C2—C399.98 (12)C5—C4—C3A104.79 (14)
N1—C2—C27110.86 (12)C5—C4—H4A110.8
C3—C2—C27115.67 (13)C3A—C4—H4A110.8
N1—C2—H2110.0C5—C4—H4B110.8
C3—C2—H2110.0C3A—C4—H4B110.8
C27—C2—H2110.0H4A—C4—H4B108.9
C21—C27—C2112.90 (12)C6—C5—C4112.63 (16)
C21—C27—H27A109.0C6—C5—H5123.7
C2—C27—H27A109.0C4—C5—H5123.7
C21—C27—H27B109.0C5—C6—C6A113.52 (16)
C2—C27—H27B109.0C5—C6—H6123.2
H27A—C27—H27B107.8C6A—C6—H6123.2
C22—C21—C26117.91 (15)N1—C6A—C6114.21 (13)
C22—C21—C27120.55 (14)N1—C6A—C61A108.98 (13)
C26—C21—C27121.54 (14)C6—C6A—C61A111.16 (13)
C23—C22—C21121.49 (16)N1—C6A—C3A102.49 (12)
C23—C22—H22119.3C6—C6A—C3A102.50 (13)
C21—C22—H22119.3C61A—C6A—C3A117.33 (13)
C24—C23—C22119.89 (17)C6A—C61A—H61A109.5
C24—C23—H23120.1C6A—C61A—H61B109.5
C22—C23—H23120.1H61A—C61A—H61B109.5
C23—C24—C25119.65 (17)C6A—C61A—H61C109.5
C23—C24—H24120.2H61A—C61A—H61C109.5
C25—C24—H24120.2H61B—C61A—H61C109.5
C2—N1—O1—C17125.72 (12)C2—C3—C3A—C6A16.77 (16)
C6A—N1—O1—C17121.00 (13)C4—C3A—C31A—O31A17.8 (2)
N1—O1—C17—C11171.95 (11)C3—C3A—C31A—O31A145.89 (17)
O1—C17—C11—C1283.28 (18)C6A—C3A—C31A—O31A98.2 (2)
O1—C17—C11—C1694.45 (17)C4—C3A—C31A—O32A165.07 (13)
C16—C11—C12—C130.1 (2)C3—C3A—C31A—O32A36.98 (18)
C17—C11—C12—C13177.82 (16)C6A—C3A—C31A—O32A78.90 (16)
C11—C12—C13—C140.4 (3)O31A—C31A—O32A—C32A0.2 (2)
C12—C13—C14—C150.7 (3)C3A—C31A—O32A—C32A177.03 (13)
C13—C14—C15—C160.6 (3)C31A—C3A—C4—C5130.43 (15)
C14—C15—C16—C110.3 (3)C3—C3A—C4—C5100.56 (16)
C12—C11—C16—C150.0 (2)C6A—C3A—C4—C511.41 (17)
C17—C11—C16—C15177.75 (16)C3A—C4—C5—C67.3 (2)
O1—N1—C2—C3163.08 (11)C4—C5—C6—C6A0.5 (2)
C6A—N1—C2—C349.17 (14)O1—N1—C6A—C643.33 (16)
O1—N1—C2—C2774.40 (14)C2—N1—C6A—C671.55 (16)
C6A—N1—C2—C27171.70 (12)O1—N1—C6A—C61A81.64 (14)
N1—C2—C27—C21171.53 (13)C2—N1—C6A—C61A163.48 (12)
C3—C2—C27—C2175.59 (17)O1—N1—C6A—C3A153.37 (11)
C2—C27—C21—C22100.61 (17)C2—N1—C6A—C3A38.49 (14)
C2—C27—C21—C2678.34 (18)C5—C6—C6A—N1117.80 (16)
C26—C21—C22—C230.9 (2)C5—C6—C6A—C61A118.39 (16)
C27—C21—C22—C23178.05 (15)C5—C6—C6A—C3A7.77 (18)
C21—C22—C23—C240.4 (3)C31A—C3A—C6A—N1110.13 (14)
C22—C23—C24—C250.5 (3)C4—C3A—C6A—N1130.07 (13)
C23—C24—C25—C260.9 (3)C3—C3A—C6A—N112.09 (15)
C24—C25—C26—C210.4 (3)C31A—C3A—C6A—C6131.22 (13)
C22—C21—C26—C250.5 (2)C4—C3A—C6A—C611.43 (15)
C27—C21—C26—C25178.44 (15)C3—C3A—C6A—C6106.55 (14)
N1—C2—C3—C3A39.62 (15)C31A—C3A—C6A—C61A9.17 (19)
C27—C2—C3—C3A158.67 (13)C4—C3A—C6A—C61A110.63 (16)
C2—C3—C3A—C31A136.34 (13)C3—C3A—C6A—C61A131.39 (14)
C2—C3—C3A—C496.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.513.444 (2)169
C27—H27B···O32Aii0.992.593.548 (2)163
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H27NO3
Mr377.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)8.8410 (17), 20.584 (4), 22.344 (2)
V3)4066.2 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.33 × 0.12
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
[SADABS (Sheldrick, 2003) and EVALCCD (Duisenberg et al., 2003)]
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
48795, 4921, 3477
Rint0.041
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 1.11
No. of reflections4921
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: COLLECT (Hooft, 2004), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003 and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.513.444 (2)169
C27—H27B···O32Aii0.992.593.548 (2)163
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y, z+3/2.
 

Acknowledgements

X-ray data were collected at the Servicios Técnicos de Investigación, Universidad de Jaén. JC and MN thank the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. LMJ and AEL thank COLCIENCIAS and Universidad del Valle for financial support of this work.

References

First citationBernstein, J., Davis, R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowman, W. R., Stephenson, P. T. & Young, A. R. (1996). Tetrahedron, 52, 11445–11462.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A, J., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A, J., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnholm, E., Jaramillo, L. M., Burroff, J. (1990). Tetrahedron Lett. 31, 3727–3730.  CrossRef CAS Web of Science Google Scholar
First citationEsker, J. L. & Newcomb, M. (1993). Adv. Heterocycl. Chem. 58, 1–45.  CrossRef CAS Web of Science Google Scholar
First citationFallis, A. G. & Brinza, I. M. (1997). Tetrahedron, 53, 17543–17594.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFriestad, G. K. (2001). Tetrahedron, 57, 5461–5496.  Web of Science CrossRef CAS Google Scholar
First citationGuindon, I., Guérin, B. & Landry, S. R. (2001). Org. Lett. 3, 2293–2296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius, Delft, The Netherlands.  Google Scholar
First citationMarco-Contelles, J., Destabel, C., Gallego, P., Chiara, J. L. & Bernabe, M. (1996). J. Org. Chem. 61, 1354–1362.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNaito, T., Miyabe, H., Ueda, M., Yoshioka, N. & Yamakawa, K. (2000). Tetrahedron, 56, 2413–2420.  Web of Science CrossRef Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003) SADABS. Bruker–Nonius, Delft, The Netherlands.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTauh, T. & Fallis, A. G. (1999). J. Org. Chem. 64, 6960–6968.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds