Download citation
Download citation
link to html
In the title compound, [Cu(C6H5N2O2S)2(H2O)2]·2H2O, the Cu atom lies on an inversion centre in a distorted square coordination geometry that consists of two O atoms of two (pyrimidin-2-ylsulfan­yl)acetate ligands [Cu-O = 1.953 (2) Å] and two O atoms of two water mol­ecules [Cu-O = 1.942 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680504002X/ng6263sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680504002X/ng6263Isup2.hkl
Contains datablock I

CCDC reference: 296618

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.054
  • wR factor = 0.125
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O1W .. 8.48 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu1 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 7 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4 PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.845(10) ...... 4.00 su-Rat O2W -H2WA 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.847(10) ...... 3.00 su-Rat O2W -H2WB 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.86(3), Rep 0.858(10) ...... 3.00 su-Rat O1W -H1WA 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.860(10) ...... 4.00 su-Rat O1W -H1WB 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 110(5), Rep 110.3(18) ...... 2.78 su-Rat H2WA -O2W -H2WB 1.555 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 108(4), Rep 108.3(17) ...... 2.35 su-Rat H1WA -O1W -H1WB 1.555 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.845(10) ...... 4.00 su-Rat O2W -H2# 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.86(4), Rep 1.860(15) ...... 2.67 su-Rat H2# -O1 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Following our studies of complexes of 2-pyrimidylthioacetic acid (Ng et al., 1993; Ma et al., 2004; Hao et al., 2005), we report the structure of the title compound, (I). The four-coordinate Cu atom is in a square coordination geometry that is made up of two O atoms of two carboxylate groups and two O atoms of two water molecules (Fig. 1). Hydrogen bonds connect the molecules and the solvent water molecules into a three-dimensional network structure.

Experimental top

Cupric nitrate (120.8 mg, 0.5 mmol) was dissolved in water (10 ml). Ammonium hydroxide was added until the solution turned blue. 2-Pyrimidylthioacetic acid (170.2 mg, 1 mmol) was suspended in a small volume of water–ethanol (1:1 v/v); ammonium hydroxide was added until the compound dissolved completely. The two solutions were then mixed. After three weeks, dark-blue crystals were obtained in 65% yield. Analysis found: C 30.41, H 3.83, N 11.82%; calculated for C12H18CuN4O8S2: C 30.20, H 3.91, N 11.78%. IR (cm−1): 3423 (νOH for H2O), 1605, 1384 (νas and νs for COO), 1551, 1309, 1280.

Refinement top

The water H atoms were located in difference Fourier maps and were refined with distance restraints of O—H = 0.85?(1) Å and H···H = 1.39?(1) Å [Uiso(H) = 0.85 Å2]. The aromatic and aliphatic H atoms were placed at calculated positions (C—H = 0.93 and 0.97 Å) and refined using the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
Diaquabis[(pyrimidin-2-ylsulfanyl)acetato]copper(II) dihydrate top
Crystal data top
[Cu(C6H5N2O2S)2(H2O)2]·2H2OF(000) = 486
Mr = 473.96Dx = 1.709 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3246 reflections
a = 17.160 (5) Åθ = 3.6–26.9°
b = 5.1577 (16) ŵ = 1.46 mm1
c = 10.568 (3) ÅT = 273 K
β = 99.942 (5)°Plate, blue
V = 921.3 (5) Å30.27 × 0.16 × 0.07 mm
Z = 2
Data collection top
Bruker APEX 2000 area-detector
diffractometer
2009 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.694, Tmax = 0.905k = 66
9709 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0443P)2 + 1.6524P]
where P = (Fo2 + 2Fc2)/3
2009 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.54 e Å3
6 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C6H5N2O2S)2(H2O)2]·2H2OV = 921.3 (5) Å3
Mr = 473.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 17.160 (5) ŵ = 1.46 mm1
b = 5.1577 (16) ÅT = 273 K
c = 10.568 (3) Å0.27 × 0.16 × 0.07 mm
β = 99.942 (5)°
Data collection top
Bruker APEX 2000 area-detector
diffractometer
2009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1874 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.905Rint = 0.056
9709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.54 e Å3
2009 reflectionsΔρmin = 0.66 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02570 (19)
S10.80407 (6)0.7913 (2)0.65446 (11)0.0500 (3)
O20.57506 (14)0.7306 (5)0.6050 (2)0.0319 (5)
O2W0.62920 (16)0.1061 (7)0.3649 (3)0.0473 (7)
O10.66342 (18)0.4828 (6)0.5426 (3)0.0547 (8)
O1W0.49139 (19)0.7477 (6)0.3599 (3)0.0503 (7)
N20.79004 (18)0.4420 (7)0.8333 (3)0.0389 (7)
C40.8364 (2)0.5496 (8)0.7638 (4)0.0396 (9)
C60.6449 (2)0.6676 (7)0.6001 (3)0.0310 (7)
C50.7052 (2)0.8451 (7)0.6747 (4)0.0365 (8)
H5A0.70240.82800.76520.044*
H5B0.69111.02230.64990.044*
N10.9119 (2)0.4954 (9)0.7660 (4)0.0634 (12)
C20.8996 (3)0.2022 (11)0.9288 (5)0.0644 (14)
H2A0.92250.08120.98910.077*
C30.8234 (3)0.2669 (9)0.9171 (4)0.0488 (10)
H3A0.79260.18610.96980.059*
C10.9414 (3)0.3199 (13)0.8494 (5)0.0710 (16)
H1A0.99420.27390.85400.085*
H1WA0.5364 (15)0.792 (9)0.342 (5)0.085*
H2WA0.635 (3)0.218 (9)0.424 (4)0.085*
H2WB0.6734 (15)0.074 (11)0.343 (5)0.085*
H1WB0.466 (3)0.886 (6)0.371 (6)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0247 (3)0.0229 (3)0.0291 (3)0.0011 (2)0.0033 (2)0.0005 (2)
S10.0337 (5)0.0594 (7)0.0555 (7)0.0110 (5)0.0036 (4)0.0132 (5)
O20.0270 (12)0.0291 (13)0.0376 (13)0.0027 (10)0.0003 (10)0.0025 (10)
O2W0.0374 (15)0.061 (2)0.0435 (16)0.0114 (14)0.0063 (12)0.0132 (14)
O10.0423 (16)0.0485 (19)0.073 (2)0.0024 (13)0.0098 (15)0.0292 (16)
O1W0.0525 (18)0.0443 (17)0.0548 (18)0.0013 (14)0.0107 (15)0.0078 (15)
N20.0314 (16)0.0449 (19)0.0402 (17)0.0028 (14)0.0057 (13)0.0016 (14)
C40.0280 (18)0.047 (2)0.043 (2)0.0017 (16)0.0016 (15)0.0039 (17)
C60.0343 (18)0.0246 (17)0.0320 (18)0.0026 (14)0.0001 (14)0.0011 (14)
C50.0314 (18)0.0303 (19)0.045 (2)0.0018 (15)0.0030 (15)0.0016 (16)
N10.0308 (18)0.094 (4)0.066 (3)0.0047 (19)0.0133 (17)0.013 (2)
C20.055 (3)0.083 (4)0.053 (3)0.025 (3)0.005 (2)0.013 (3)
C30.046 (2)0.056 (3)0.045 (2)0.008 (2)0.0080 (18)0.005 (2)
C10.031 (2)0.105 (5)0.076 (3)0.025 (3)0.008 (2)0.013 (3)
Geometric parameters (Å, º) top
Cu1—O1W1.942 (3)N2—C41.297 (5)
Cu1—O1Wi1.942 (3)N2—C31.324 (5)
Cu1—O21.953 (2)C4—N11.322 (5)
Cu1—O2i1.953 (2)C6—C51.499 (5)
S1—C41.725 (4)C5—H5A0.9700
S1—C51.768 (4)C5—H5B0.9700
O2—C61.252 (4)N1—C11.303 (7)
O2W—H2WA0.845 (10)C2—C31.333 (6)
O2W—H2WB0.847 (10)C2—C11.340 (7)
O1—C61.202 (4)C2—H2A0.9300
O1W—H1WA0.858 (10)C3—H3A0.9300
O1W—H1WB0.860 (10)C1—H1A0.9300
O1W—Cu1—O1Wi180.0O2—C6—C5113.5 (3)
O1W—Cu1—O289.34 (12)C6—C5—S1115.5 (3)
O1Wi—Cu1—O290.66 (12)C6—C5—H5A108.4
O1W—Cu1—O2i90.66 (12)S1—C5—H5A108.4
O1Wi—Cu1—O2i89.34 (12)C6—C5—H5B108.4
O2—Cu1—O2i180.00 (11)S1—C5—H5B108.4
C4—S1—C5103.70 (19)H5A—C5—H5B107.5
C6—O2—Cu1111.1 (2)C1—N1—C4115.0 (4)
H2WA—O2W—H2WB110.3 (18)C3—C2—C1116.8 (5)
Cu1—O1W—H1WA113 (4)C3—C2—H2A121.6
Cu1—O1W—H1WB114 (4)C1—C2—H2A121.6
H1WA—O1W—H1WB108.3 (17)N2—C3—C2122.5 (4)
C4—N2—C3115.7 (4)N2—C3—H3A118.8
N2—C4—N1126.5 (4)C2—C3—H3A118.8
N2—C4—S1122.1 (3)N1—C1—C2123.5 (4)
N1—C4—S1111.4 (3)N1—C1—H1A118.3
O1—C6—O2124.4 (3)C2—C1—H1A118.3
O1—C6—C5122.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.85 (1)1.86 (2)2.695 (4)169 (5)

Experimental details

Crystal data
Chemical formula[Cu(C6H5N2O2S)2(H2O)2]·2H2O
Mr473.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)17.160 (5), 5.1577 (16), 10.568 (3)
β (°) 99.942 (5)
V3)921.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.27 × 0.16 × 0.07
Data collection
DiffractometerBruker APEX 2000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.694, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
9709, 2009, 1874
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.125, 1.16
No. of reflections2009
No. of parameters140
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.66

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O1W1.942 (3)O2—C61.252 (4)
Cu1—O21.953 (2)O1—C61.202 (4)
O1W—Cu1—O289.34 (12)O1—C6—O2124.4 (3)
O1Wi—Cu1—O290.66 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O10.845 (10)1.860 (15)2.695 (4)169 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds