Download citation
Download citation
link to html
The title compound, C17H17NO2, has been synthesized by the condensation reaction of benzoyl­acetone and 2-hydroxy­methyl­aniline. The mol­ecules are connected via O—H...O(=C) hydrogen bonds, forming centrosymmetric R22(16) dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040390/ob6602sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040390/ob6602Isup2.hkl
Contains datablock I

CCDC reference: 296627

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.053
  • wR factor = 0.190
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Enaminones have been studied extensively, not only because of plentiful reaction chemistry (Christoffers et al., 2003; Tietze et al., 1989), but also owing to their applications in coordination chemistry (Kim et al., 2001; Doherty et al., 1999) as well as chiral auxiliaries in organic synthesis (Christoffers, 2003). As part of an ongoing investigation of the chemistry of enaminones, compound (I) has been synthesized by the condensation of benzoylacetone and 2-hydroxymethylaniline (Shi et al., 2004, 2005) and its crystal structure has been determined (Fig. 1). An organometallic analog of (I), hereafter (II), has already been studied (Shi, 2005).

The bond lengths and angles of the OC–CC–N system in (I) are similar to the corresponding values in (II) (Table 1). For (I) and (II), the bond lengths in the OC–CC–N system indicate electron delocalization (Gilli et al., 2000). The dihedral angles between the OC–CC–N system and the planes of the C1—C6 and C11—C16 rings in (I) are 18.94 (14) and 41.06 (12)°, repsectively. The corresponding angles in (II) are 5.4 (3) and 67.8 (3)°, respectively. The bonds linking the O C–CC–N system and the aromatic ring in (I) and (II) are typical single bonds (Csp2–Csp2), suggesting that the C1–C6 benzene ring in (I) and the substituted cyclopentadienyl ring in (II) are not involved in the conjugation of the OC–CC–N system.

As in (II), the strong intramolecular hydrogen bond between the enamine N atom and the carbonyl O atom in (I) stabilizes the enaminone. Furthermore, intermolecular O–H···OC hydrogen bonds form centrosymmetric R22(16) dimers. Unlike in (II), C—H···O hydrogen bonds (Table 2) are also observed in (I).

Experimental top

An ethanol solution of benzoylacetone and 2-(hydroxymethyl)aniline (1:1) was refluxed for 28 h. After removal of the solvent, the residue was recrystallized from CH2Cl2 and diethyl ether (1:1, v/v) at 278 K to afford the yellow compound (I) (yield, 52%; m.p., 391.2–392.6 K).

Refinement top

All H atoms were placed at geometrically idealized positions, and treated as riding atoms, with C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
3-[2-(Hydroxymethyl)anilino]-1-phenylbut-2-en-1-one top
Crystal data top
C17H17NO2F(000) = 568
Mr = 267.32Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5030 (17) ÅCell parameters from 25 reflections
b = 11.543 (2) Åθ = 9–14°
c = 14.717 (3) ŵ = 0.08 mm1
β = 102.74 (3)°T = 295 K
V = 1408.9 (5) Å3Block, yellow
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 014
Tmin = 0.953, Tmax = 0.984l = 1817
2957 measured reflections3 standard reflections every 200 reflections
2766 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.1005P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2766 reflectionsΔρmax = 0.21 e Å3
184 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (6)
Crystal data top
C17H17NO2V = 1408.9 (5) Å3
Mr = 267.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5030 (17) ŵ = 0.08 mm1
b = 11.543 (2) ÅT = 295 K
c = 14.717 (3) Å0.40 × 0.30 × 0.20 mm
β = 102.74 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1867 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.028
Tmin = 0.953, Tmax = 0.9843 standard reflections every 200 reflections
2957 measured reflections intensity decay: none
2766 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
2766 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76595 (19)0.87795 (17)0.09528 (11)0.0626 (5)
O20.3700 (2)1.19095 (16)0.07980 (12)0.0619 (5)
H2O0.31971.17170.02780.093*
N0.6549 (2)0.93678 (18)0.24276 (13)0.0521 (5)
H1N0.63630.91350.18590.062*
C21.1606 (4)0.8183 (3)0.0244 (2)0.0846 (10)
H21.15210.82780.08800.101*
C31.3003 (3)0.7753 (3)0.0299 (3)0.0741 (8)
H31.38620.75580.00320.089*
C41.3125 (3)0.7613 (3)0.1234 (2)0.0735 (8)
H41.40710.73250.16070.088*
C51.1841 (3)0.7901 (2)0.1627 (2)0.0648 (7)
H51.19400.78070.22640.078*
C61.0425 (3)0.8323 (2)0.10951 (17)0.0504 (6)
C11.0315 (3)0.8479 (3)0.0146 (2)0.0713 (8)
H10.93780.87820.02270.086*
C70.9015 (3)0.8667 (2)0.14939 (16)0.0489 (6)
C80.9250 (3)0.8873 (2)0.24581 (16)0.0526 (6)
H81.02790.87550.28230.063*
C90.8063 (3)0.9237 (2)0.29023 (16)0.0484 (6)
C100.8505 (3)0.9501 (3)0.39235 (17)0.0656 (7)
H10A0.80091.02160.40420.098*
H10B0.96550.95690.41210.098*
H10C0.81330.88860.42630.098*
C110.5193 (3)0.9835 (2)0.27196 (15)0.0475 (6)
C120.4797 (3)0.9486 (2)0.35449 (17)0.0575 (7)
H120.54010.89190.39140.069*
C130.3493 (3)0.9993 (3)0.38118 (19)0.0645 (7)
H130.32460.97820.43740.077*
C140.2570 (3)1.0794 (2)0.32608 (19)0.0610 (7)
H140.17081.11380.34520.073*
C150.2912 (3)1.1099 (2)0.24152 (18)0.0533 (6)
H150.22551.16280.20320.064*
C160.4222 (2)1.0624 (2)0.21339 (15)0.0460 (6)
C170.4632 (3)1.0968 (3)0.12242 (17)0.0599 (7)
H17A0.57651.11740.13370.072*
H17B0.44581.03110.08040.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (9)0.0947 (14)0.0461 (9)0.0126 (9)0.0051 (7)0.0076 (9)
O20.0664 (11)0.0649 (11)0.0480 (10)0.0052 (9)0.0014 (8)0.0000 (8)
N0.0437 (10)0.0698 (13)0.0416 (10)0.0099 (9)0.0069 (8)0.0044 (9)
C20.0677 (18)0.121 (3)0.0729 (19)0.0076 (19)0.0329 (16)0.0120 (19)
C30.0580 (16)0.0708 (18)0.104 (2)0.0023 (14)0.0407 (16)0.0122 (17)
C40.0538 (15)0.0663 (18)0.104 (2)0.0141 (13)0.0262 (16)0.0087 (16)
C50.0541 (14)0.0674 (17)0.0741 (18)0.0144 (13)0.0167 (13)0.0079 (14)
C60.0447 (12)0.0517 (14)0.0565 (14)0.0029 (10)0.0148 (10)0.0068 (11)
C10.0502 (15)0.104 (2)0.0616 (17)0.0003 (15)0.0170 (12)0.0090 (16)
C70.0403 (11)0.0537 (14)0.0514 (13)0.0027 (10)0.0075 (10)0.0016 (11)
C80.0394 (11)0.0676 (16)0.0482 (13)0.0035 (11)0.0039 (10)0.0031 (11)
C90.0456 (12)0.0543 (14)0.0443 (12)0.0003 (10)0.0076 (10)0.0010 (10)
C100.0553 (15)0.092 (2)0.0465 (14)0.0000 (14)0.0050 (11)0.0082 (13)
C110.0414 (11)0.0565 (14)0.0449 (12)0.0006 (10)0.0101 (10)0.0074 (10)
C120.0573 (14)0.0657 (16)0.0505 (13)0.0052 (12)0.0139 (11)0.0065 (12)
C130.0629 (16)0.0794 (19)0.0574 (15)0.0011 (14)0.0267 (13)0.0002 (14)
C140.0517 (14)0.0677 (17)0.0697 (17)0.0009 (12)0.0264 (13)0.0107 (14)
C150.0447 (12)0.0551 (14)0.0603 (15)0.0022 (11)0.0120 (11)0.0041 (11)
C160.0408 (11)0.0508 (13)0.0452 (12)0.0033 (10)0.0072 (10)0.0065 (10)
C170.0508 (14)0.0792 (18)0.0489 (14)0.0095 (12)0.0093 (11)0.0047 (13)
Geometric parameters (Å, º) top
O1—C71.255 (3)C8—C91.383 (3)
O2—C171.408 (3)C8—H80.9300
O2—H2O0.8200C9—C101.498 (3)
N—C91.331 (3)C10—H10A0.9600
N—C111.423 (3)C10—H10B0.9600
N—H1N0.8600C10—H10C0.9600
C2—C31.370 (4)C11—C121.390 (3)
C2—C11.388 (4)C11—C161.393 (3)
C2—H20.9300C12—C131.384 (3)
C3—C41.367 (4)C12—H120.9300
C3—H30.9300C13—C141.360 (4)
C4—C51.384 (4)C13—H130.9300
C4—H40.9300C14—C151.385 (4)
C5—C61.372 (3)C14—H140.9300
C5—H50.9300C15—C161.383 (3)
C6—C11.391 (4)C15—H150.9300
C6—C71.501 (3)C16—C171.509 (3)
C1—H10.9300C17—H17A0.9700
C7—C81.409 (3)C17—H17B0.9700
C17—O2—H2O109.5C9—C10—H10A109.5
C9—N—C11129.7 (2)C9—C10—H10B109.5
C9—N—H1N115.1H10A—C10—H10B109.5
C11—N—H1N115.1C9—C10—H10C109.5
C3—C2—C1120.8 (3)H10A—C10—H10C109.5
C3—C2—H2119.6H10B—C10—H10C109.5
C1—C2—H2119.6C12—C11—C16120.4 (2)
C4—C3—C2119.6 (3)C12—C11—N121.5 (2)
C4—C3—H3120.2C16—C11—N118.1 (2)
C2—C3—H3120.2C13—C12—C11119.3 (2)
C3—C4—C5120.0 (3)C13—C12—H12120.4
C3—C4—H4120.0C11—C12—H12120.4
C5—C4—H4120.0C14—C13—C12120.8 (2)
C6—C5—C4121.4 (3)C14—C13—H13119.6
C6—C5—H5119.3C12—C13—H13119.6
C4—C5—H5119.3C13—C14—C15120.0 (2)
C5—C6—C1118.4 (2)C13—C14—H14120.0
C5—C6—C7123.2 (2)C15—C14—H14120.0
C1—C6—C7118.4 (2)C16—C15—C14120.8 (2)
C2—C1—C6119.9 (3)C16—C15—H15119.6
C2—C1—H1120.0C14—C15—H15119.6
C6—C1—H1120.0C15—C16—C11118.7 (2)
O1—C7—C6118.7 (2)C15—C16—C17121.3 (2)
O1—C7—C8121.9 (2)C11—C16—C17120.0 (2)
C6—C7—C8119.4 (2)O2—C17—C16112.4 (2)
C9—C8—C7124.8 (2)O2—C17—H17A109.1
C9—C8—H8117.6C16—C17—H17A109.1
C7—C8—H8117.6O2—C17—H17B109.1
N—C9—C8120.6 (2)C16—C17—H17B109.1
N—C9—C10120.2 (2)H17A—C17—H17B107.9
C8—C9—C10119.2 (2)
C1—C2—C3—C40.1 (5)C7—C8—C9—C10175.9 (2)
C2—C3—C4—C50.2 (5)C9—N—C11—C1248.7 (4)
C3—C4—C5—C60.4 (5)C9—N—C11—C16134.0 (3)
C4—C5—C6—C11.3 (4)C16—C11—C12—C134.6 (4)
C4—C5—C6—C7178.8 (2)N—C11—C12—C13178.1 (2)
C3—C2—C1—C61.0 (5)C11—C12—C13—C142.3 (4)
C5—C6—C1—C21.6 (4)C12—C13—C14—C151.1 (4)
C7—C6—C1—C2179.2 (3)C13—C14—C15—C162.2 (4)
C5—C6—C7—O1163.3 (3)C14—C15—C16—C110.1 (4)
C1—C6—C7—O119.2 (4)C14—C15—C16—C17178.6 (2)
C5—C6—C7—C817.7 (4)C12—C11—C16—C153.5 (3)
C1—C6—C7—C8159.8 (2)N—C11—C16—C15179.1 (2)
O1—C7—C8—C91.6 (4)C12—C11—C16—C17178.0 (2)
C6—C7—C8—C9177.4 (2)N—C11—C16—C170.6 (3)
C11—N—C9—C8173.1 (2)C15—C16—C17—O28.6 (3)
C11—N—C9—C106.0 (4)C11—C16—C17—O2169.9 (2)
C7—C8—C9—N3.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O10.861.952.640 (3)136
O2—H2O···O1i0.821.892.701 (2)172
C12—H12···O2ii0.932.453.297 (3)152
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17NO2
Mr267.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.5030 (17), 11.543 (2), 14.717 (3)
β (°) 102.74 (3)
V3)1408.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
2957, 2766, 1867
Rint0.028
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.190, 1.08
No. of reflections2766
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
O1—C71.255 (3)C6—C71.501 (3)
O2—C171.408 (3)C7—C81.409 (3)
N—C91.331 (3)C8—C91.383 (3)
N—C111.423 (3)C9—C101.498 (3)
C9—N—C11129.7 (2)N—C9—C8120.6 (2)
O1—C7—C6118.7 (2)N—C9—C10120.2 (2)
O1—C7—C8121.9 (2)C8—C9—C10119.2 (2)
C6—C7—C8119.4 (2)
C5—C6—C7—C817.7 (4)C9—N—C11—C1248.7 (4)
C7—C8—C9—N3.3 (4)C15—C16—C17—O28.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O10.861.952.640 (3)136
O2—H2O···O1i0.821.892.701 (2)172
C12—H12···O2ii0.932.453.297 (3)152
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds