Download citation
Download citation
link to html
The title compound, C19H19NO6, has been synthesized by the reaction of 3-nitro­benzaldehyde with 1,3-cyclo­hexa­nedione in glycol under microwave irradiation. The compound is an inter­mediate of the target product 9-(3-nitro­phen­yl)-3,4,6,7-tetra­hydro-2H-xanthene-1,8(5H,9H)-dione. X-ray crystal-structure analysis reveals that the central hydro­pyran ring adopts a half-chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042194/rz6157sup1.cif
Contains datablocks x050605f, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042194/rz6157Isup2.hkl
Contains datablock I

CCDC reference: 296725

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.058
  • wR factor = 0.138
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 44 Perc. PLAT355_ALERT_3_C Long O-H Bond (0.82A) O1 - H1 ... 1.01 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Pyrans and fused pyrans are biologically interesting compounds with antibacterial activitiy (El-Agrody et al., 2000), antifungal activity (Ohira & Yatagai, 1993), antitumor activity (Mohr et al., 1975) and hypotensive effect (Tandon et al., 1991). Polyfuctionalized 4H-pyrans are the structural units of a number of natural products and are used as versatile synthons because of the inherent reactivity of the inbuilt pyran ring. 4H-Pyran rings can be transformed to pyridine systems related to pharmacologically important calcium antagonists of the DHP type (Ciller et al., 1985; Marugan et al., 1989; Gonzalez et al., 1992).

In the course of our studies aimed at developing new approaches for the synthesis of xanthone derivatives, we synthesized the title compound, (I), as an intermediate reaction product. Its structure is reported here.

The central O2/C1/C6/C7/C8/C13 hydropyran ring in (I) displays a half-chair conformation, with atoms C1 and C6 displaced from the mean plane by −0.374 (3) and 0.283 (3) Å, respectively (Fig. 1). The C1–C6 ring is in a sofa conformation, with atoms C1 and C4 deviating from the C2/C3/C5/C6 plane by −0.659 (3) and 0.614 (4) Å, respectively. The C8–C13 ring adopts a boat conformation, with atoms C8 and C11 displaced from the C9/C10/C12/C13 plane by 0.143 (3) and 0.628 (4) Å, respectively.

In the crystal structure, there is a strong O—H···O intermolecular hydrogen-bond interaction, stabilizing the structure (Table 1, Fig. 2).

Experimental top

The title compound was prepared by the reaction of 3-nitrobenzaldehyde (1 mmol) with 1,3-cyclohexanedione (2 mmol) in glycol under microwave irradiation. The reaction was completed in 4 min. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution (m.p. 492 K).

Refinement top

The H atom bonded to O1 was localized in a difference Fourier map and refined isotropically. All other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) values set equal to 1.5Ueq(C) for the methyl H atoms and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Partial packing diagram for (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
4a-Hydroxy-9-(3-nitro-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione top
Crystal data top
C19H19NO6F(000) = 752
Mr = 357.35Dx = 1.355 Mg m3
Monoclinic, P21/nMelting point: 492 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2983 (11) ÅCell parameters from 1499 reflections
b = 12.869 (2) Åθ = 2.5–24.3°
c = 21.619 (4) ŵ = 0.10 mm1
β = 90.960 (4)°T = 294 K
V = 1752.1 (5) Å3Prism, colourless
Z = 40.22 × 0.18 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube1536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 26.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.970, Tmax = 0.994k = 1416
9539 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H19NO6V = 1752.1 (5) Å3
Mr = 357.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2983 (11) ŵ = 0.10 mm1
b = 12.869 (2) ÅT = 294 K
c = 21.619 (4) Å0.22 × 0.18 × 0.06 mm
β = 90.960 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1536 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.994Rint = 0.082
9539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.18 e Å3
3530 reflectionsΔρmin = 0.19 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8223 (4)0.37217 (15)0.18106 (11)0.0535 (7)
H10.848 (6)0.439 (3)0.204 (2)0.119 (15)*
O20.4539 (3)0.38226 (13)0.18857 (10)0.0491 (6)
O30.6032 (4)0.04412 (15)0.25377 (11)0.0613 (7)
O40.9200 (4)0.20673 (16)0.05762 (11)0.0616 (7)
O50.8997 (5)0.18122 (17)0.09561 (14)0.0881 (10)
O60.6440 (4)0.25602 (17)0.04763 (15)0.0953 (11)
N10.7198 (6)0.18198 (19)0.07495 (15)0.0598 (9)
C10.6319 (5)0.37591 (19)0.14704 (16)0.0410 (8)
C20.6153 (6)0.4710 (2)0.10583 (17)0.0548 (10)
H2A0.47770.47190.08500.066*
H2B0.62720.53330.13100.066*
C30.7886 (6)0.4707 (2)0.05814 (18)0.0634 (11)
H3A0.92510.47960.07890.076*
H3B0.76760.52910.03030.076*
C40.7917 (6)0.3703 (2)0.02044 (17)0.0600 (10)
H4A0.66770.36780.00670.072*
H4B0.91690.36920.00510.072*
C50.7930 (5)0.2760 (2)0.06244 (16)0.0450 (9)
C60.6219 (5)0.27558 (18)0.11060 (14)0.0361 (8)
H60.48460.27410.08860.043*
C70.6300 (5)0.18076 (17)0.15356 (14)0.0344 (8)
H70.77800.16860.16630.041*
C80.5018 (5)0.20157 (18)0.21027 (14)0.0369 (8)
C90.4888 (6)0.1214 (2)0.25756 (16)0.0469 (9)
C100.3445 (6)0.1366 (3)0.31102 (18)0.0694 (11)
H10A0.42810.15830.34680.083*
H10B0.27820.07080.32090.083*
C110.1724 (6)0.2168 (3)0.2982 (2)0.0767 (12)
H11A0.09570.23050.33590.092*
H11B0.07240.18990.26760.092*
C120.2699 (6)0.3176 (2)0.27459 (17)0.0586 (10)
H12A0.15790.36410.26050.070*
H12B0.34760.35170.30800.070*
C130.4160 (5)0.2959 (2)0.22272 (16)0.0464 (9)
C140.5469 (4)0.08390 (19)0.12010 (14)0.0339 (7)
C150.6707 (5)0.00347 (19)0.11298 (14)0.0383 (8)
H150.80920.00510.12860.046*
C160.5865 (5)0.08853 (19)0.08243 (15)0.0410 (8)
C170.3828 (6)0.0902 (2)0.05858 (16)0.0525 (10)
H170.32990.14840.03800.063*
C180.2601 (5)0.0031 (2)0.06608 (16)0.0515 (9)
H180.12150.00200.05050.062*
C190.3407 (5)0.0830 (2)0.09648 (15)0.0441 (9)
H190.25540.14130.10120.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (16)0.0384 (11)0.0638 (18)0.0002 (11)0.0138 (13)0.0135 (11)
O20.0607 (16)0.0335 (10)0.0532 (17)0.0138 (11)0.0066 (13)0.0038 (10)
O30.0895 (19)0.0378 (11)0.0564 (18)0.0131 (12)0.0045 (14)0.0127 (11)
O40.0526 (15)0.0575 (13)0.075 (2)0.0102 (13)0.0097 (13)0.0003 (13)
O50.080 (2)0.0553 (14)0.128 (3)0.0156 (15)0.019 (2)0.0257 (15)
O60.097 (2)0.0494 (13)0.140 (3)0.0147 (14)0.0057 (19)0.0418 (16)
N10.068 (2)0.0353 (14)0.076 (3)0.0087 (16)0.0138 (19)0.0097 (15)
C10.043 (2)0.0303 (14)0.050 (2)0.0054 (15)0.0020 (18)0.0002 (15)
C20.069 (3)0.0304 (15)0.065 (3)0.0013 (16)0.000 (2)0.0067 (16)
C30.074 (3)0.0383 (17)0.078 (3)0.0108 (18)0.004 (2)0.0141 (18)
C40.066 (3)0.0498 (18)0.064 (3)0.0132 (18)0.008 (2)0.0097 (18)
C50.042 (2)0.0402 (17)0.053 (3)0.0095 (17)0.0053 (18)0.0002 (17)
C60.0364 (19)0.0310 (14)0.041 (2)0.0005 (14)0.0032 (16)0.0006 (14)
C70.0363 (18)0.0288 (13)0.038 (2)0.0007 (13)0.0034 (15)0.0016 (13)
C80.045 (2)0.0304 (14)0.035 (2)0.0012 (14)0.0079 (16)0.0000 (14)
C90.063 (2)0.0394 (16)0.038 (2)0.0090 (17)0.0054 (18)0.0026 (16)
C100.104 (3)0.0516 (19)0.053 (3)0.008 (2)0.017 (2)0.0077 (19)
C110.084 (3)0.077 (2)0.070 (3)0.002 (2)0.029 (2)0.005 (2)
C120.069 (3)0.057 (2)0.050 (3)0.0202 (19)0.008 (2)0.0008 (18)
C130.053 (2)0.0418 (17)0.044 (2)0.0064 (16)0.0035 (18)0.0017 (16)
C140.0343 (19)0.0357 (14)0.032 (2)0.0040 (14)0.0032 (15)0.0026 (13)
C150.0394 (19)0.0332 (14)0.042 (2)0.0052 (15)0.0013 (16)0.0029 (14)
C160.046 (2)0.0315 (14)0.045 (2)0.0071 (15)0.0103 (17)0.0047 (14)
C170.061 (3)0.0448 (17)0.052 (3)0.0186 (18)0.0021 (19)0.0055 (16)
C180.043 (2)0.0586 (19)0.053 (3)0.0130 (18)0.0067 (17)0.0057 (18)
C190.039 (2)0.0414 (15)0.051 (2)0.0028 (15)0.0029 (17)0.0014 (15)
Geometric parameters (Å, º) top
O1—C11.397 (3)C7—C141.529 (3)
O1—H11.00 (4)C7—H70.9800
O2—C131.358 (3)C8—C131.357 (4)
O2—C11.451 (4)C8—C91.456 (4)
O3—C91.231 (3)C9—C101.495 (5)
O4—C51.204 (3)C10—C111.519 (5)
O5—N11.211 (3)C10—H10A0.9700
O6—N11.215 (3)C10—H10B0.9700
N1—C161.477 (4)C11—C121.527 (4)
C1—C61.513 (4)C11—H11A0.9700
C1—C21.517 (4)C11—H11B0.9700
C2—C31.514 (5)C12—C131.489 (5)
C2—H2A0.9700C12—H12A0.9700
C2—H2B0.9700C12—H12B0.9700
C3—C41.529 (4)C14—C151.378 (3)
C3—H3A0.9700C14—C191.388 (4)
C3—H3B0.9700C15—C161.380 (4)
C4—C51.515 (4)C15—H150.9300
C4—H4A0.9700C16—C171.375 (4)
C4—H4B0.9700C17—C181.373 (4)
C5—C61.511 (5)C17—H170.9300
C6—C71.534 (4)C18—C191.380 (4)
C6—H60.9800C18—H180.9300
C7—C81.503 (4)C19—H190.9300
C1—O1—H1111 (2)C13—C8—C7122.8 (3)
C13—O2—C1115.8 (2)C9—C8—C7118.9 (2)
O5—N1—O6122.9 (3)O3—C9—C8119.1 (3)
O5—N1—C16118.9 (3)O3—C9—C10121.4 (3)
O6—N1—C16118.2 (3)C8—C9—C10119.5 (3)
O1—C1—O2110.0 (3)C9—C10—C11112.9 (3)
O1—C1—C6105.8 (2)C9—C10—H10A109.0
O2—C1—C6110.1 (2)C11—C10—H10A109.0
O1—C1—C2112.8 (2)C9—C10—H10B109.0
O2—C1—C2105.8 (2)C11—C10—H10B109.0
C6—C1—C2112.4 (3)H10A—C10—H10B107.8
C3—C2—C1110.8 (3)C10—C11—C12110.4 (3)
C3—C2—H2A109.5C10—C11—H11A109.6
C1—C2—H2A109.5C12—C11—H11A109.6
C3—C2—H2B109.5C10—C11—H11B109.6
C1—C2—H2B109.5C12—C11—H11B109.6
H2A—C2—H2B108.1H11A—C11—H11B108.1
C2—C3—C4112.4 (3)C13—C12—C11110.4 (3)
C2—C3—H3A109.1C13—C12—H12A109.6
C4—C3—H3A109.1C11—C12—H12A109.6
C2—C3—H3B109.1C13—C12—H12B109.6
C4—C3—H3B109.1C11—C12—H12B109.6
H3A—C3—H3B107.9H12A—C12—H12B108.1
C5—C4—C3110.9 (3)C8—C13—O2123.4 (3)
C5—C4—H4A109.5C8—C13—C12124.8 (3)
C3—C4—H4A109.5O2—C13—C12111.8 (2)
C5—C4—H4B109.5C15—C14—C19118.6 (2)
C3—C4—H4B109.5C15—C14—C7121.9 (2)
H4A—C4—H4B108.0C19—C14—C7119.5 (2)
O4—C5—C6122.6 (3)C14—C15—C16119.2 (3)
O4—C5—C4122.6 (3)C14—C15—H15120.4
C6—C5—C4114.8 (3)C16—C15—H15120.4
C5—C6—C1109.3 (2)C17—C16—C15122.7 (3)
C5—C6—C7113.8 (2)C17—C16—N1118.4 (3)
C1—C6—C7111.3 (3)C15—C16—N1118.9 (3)
C5—C6—H6107.4C18—C17—C16117.8 (3)
C1—C6—H6107.4C18—C17—H17121.1
C7—C6—H6107.4C16—C17—H17121.1
C8—C7—C14110.3 (2)C17—C18—C19120.5 (3)
C8—C7—C6109.8 (2)C17—C18—H18119.7
C14—C7—C6110.8 (2)C19—C18—H18119.7
C8—C7—H7108.6C18—C19—C14121.1 (3)
C14—C7—H7108.6C18—C19—H19119.4
C6—C7—H7108.6C14—C19—H19119.4
C13—C8—C9117.9 (3)
C13—O2—C1—O168.8 (3)C7—C8—C9—C10173.8 (3)
C13—O2—C1—C647.5 (3)O3—C9—C10—C11162.6 (3)
C13—O2—C1—C2169.2 (2)C8—C9—C10—C1120.1 (4)
O1—C1—C2—C362.3 (4)C9—C10—C11—C1251.6 (4)
O2—C1—C2—C3177.5 (3)C10—C11—C12—C1350.3 (4)
C6—C1—C2—C357.3 (4)C9—C8—C13—O2166.4 (3)
C1—C2—C3—C454.2 (4)C7—C8—C13—O26.4 (4)
C2—C3—C4—C550.8 (4)C9—C8—C13—C1213.9 (4)
C3—C4—C5—O4129.0 (3)C7—C8—C13—C12173.4 (3)
C3—C4—C5—C651.3 (4)C1—O2—C13—C814.8 (4)
O4—C5—C6—C1126.9 (3)C1—O2—C13—C12165.4 (3)
C4—C5—C6—C153.4 (3)C11—C12—C13—C818.7 (5)
O4—C5—C6—C71.7 (4)C11—C12—C13—O2161.1 (3)
C4—C5—C6—C7178.5 (2)C8—C7—C14—C15117.3 (3)
O1—C1—C6—C567.8 (3)C6—C7—C14—C15120.9 (3)
O2—C1—C6—C5173.4 (2)C8—C7—C14—C1962.2 (3)
C2—C1—C6—C555.7 (4)C6—C7—C14—C1959.6 (4)
O1—C1—C6—C758.8 (3)C19—C14—C15—C160.4 (4)
O2—C1—C6—C760.1 (3)C7—C14—C15—C16179.9 (3)
C2—C1—C6—C7177.7 (3)C14—C15—C16—C170.1 (5)
C5—C6—C7—C8163.1 (2)C14—C15—C16—N1180.0 (3)
C1—C6—C7—C839.0 (3)O5—N1—C16—C17179.8 (3)
C5—C6—C7—C1474.9 (3)O6—N1—C16—C170.5 (5)
C1—C6—C7—C14161.1 (3)O5—N1—C16—C150.3 (5)
C14—C7—C8—C13129.4 (3)O6—N1—C16—C15179.6 (3)
C6—C7—C8—C137.1 (4)C15—C16—C17—C180.2 (5)
C14—C7—C8—C957.9 (3)N1—C16—C17—C18179.7 (3)
C6—C7—C8—C9179.8 (2)C16—C17—C18—C190.2 (5)
C13—C8—C9—O3164.2 (3)C17—C18—C19—C140.1 (5)
C7—C8—C9—O38.9 (4)C15—C14—C19—C180.4 (5)
C13—C8—C9—C1013.1 (4)C7—C14—C19—C18179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i1.00 (4)1.66 (4)2.661 (3)175 (4)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H19NO6
Mr357.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.2983 (11), 12.869 (2), 21.619 (4)
β (°) 90.960 (4)
V3)1752.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9539, 3530, 1536
Rint0.082
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.138, 0.94
No. of reflections3530
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i1.00 (4)1.66 (4)2.661 (3)175 (4)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds