Download citation
Download citation
link to html
In the title compound, C12H18N4OS2+·Cl·ClO4, the thia­minium cations form `head-to-tail' N—H...O hydrogen-bonded dimers about inversion centres. N—H...Cl and O—H...Cl hydrogen bonds further stabilize the structure, forming a one-dimensional chain running along the diagonal of the ac plane. Both anions are located adjacent to `anion holes' in the thia­minium cation. The perchlorate anions show rotational disorder about a Cl—O bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039358/sj6170sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039358/sj6170Isup2.hkl
Contains datablock I

CCDC reference: 296659

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.029
  • wR factor = 0.082
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 33.00 Perc. PLAT430_ALERT_2_C Short Inter D...A Contact N8 .. O12' .. 2.90 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H12 .. O11 .. 2.78 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H12 .. O13 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. CL2 .. 2.85 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 Cl
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Thiamine (vitamin B1) deficiency leads to an number of medical problems, including wet beri-beri and heart failure, and hence vitamin B1 supplements are commonly admistered (Suter, 2004). Thiamine, in the form of pyrophosphate cocarboxylase, is the coenzyme for many reactions, including the oxidative decarboxylation of pyruvic acid (Breslow, 1958). Derivatives of thiamine disulfides are also used as therapeutic provitamins, due to their high absorptivity in the gastrointestinal tract (Suzuoki et al., 1965). Protonation on one of the N atoms of monovalent thiamine (Th+) leads to a divalent cation with a protonated pyrimidine ring and a monovalent thiazolium ring. Numerous crystal structures of mono- and divalent thiamine cations with a variety of anions have been reported previously (Kraut & Reed, 1962; Ishida et al., 1984; Shin & Chun, 1987; Koziol et al., 1987; Aoki et al., 1988; Cramer & Carrie, 1989; Casas et al., 1994).

The title compound, (I), crystallizes with a divalent thiaminium cation, and Cl and perchlorate anions in the asymmetric unit (Fig. 1). The pyrimidine ring is protonated at N1, with C—N bond distances and the C—N—C bond angle being typical for a protonated N atom (Hu et al., 2000). The planar pyridimine and thiazolium rings are inclined to one another at a dihedral angle of 71.8 (1)°. Two conformation angles about the C7 methylene group [ϕT (C5—C7—N8—C12) and ϕP (C4—C5—C7—N8)] define three possible forms of thiamine, namely F, S and V (Shin et al., 1977). Our statistical analysis from the Cambridge Structural Database (Version 5.26 of November 2004; Allen, 2002) indicates that the F form occurs frequently when atom C12 in the thiazolium ring carries no substituents. In (I), the thiamine is in the preferred F conformation, with ϕT = −8.6 (3)° and ϕP = 79.2 (2)°, close to the ideal values (ϕT = 0° and ϕP = ±90°). The conformation of the 5-(β-hydroxyethyl) side chain is also described by the two torsion angles ϕ5α (S11—C10—C13—C14) and ϕ5β (C10—C13—C14—O15) (Table 1), which result in a close contact between the electronegative atom O15 and the electropositive atom S11 of 2.921 (2) Å, a common structural feature of thiamine compounds (Shin et al., 1977), causing the hydroxyethyl side-chain to fold back towards the thaizolium ring.

Stabilization in the crystal structure of (I) results from interactions between adjacent thiamine units, both with themselves and through the anions. This occurs through a range of classical and non-classical hydrogen bonding interactions (Table 2), augmented by a weak S···O interaction [S1···O11(−x + 1, −y + 1, −z + 2) 3.117 (2) Å] and electrostatic interactions. In the title compound, however, classical hydrogen bonding dominates. `Head-to-tail' dimers form around inversion centres through N—H41A···O15 hydrogen bonds (Fig. 3), to form a closed hydrogen-bonding network in the bc plane. This results in a cavity of approximate dimensions 5.52 × 5.24 Å running along the a axis. In addition, N41—H41B···O interactions link the perchlorate anion to the cation in a location described as anion hole II (Hu et al., 2000). Further strong N1—H1···Cl2 and O15—H15···Cl2 hydrogen bonds complete the network, forming infinite chains along the diagonal of the ac plane. C12—H12···O interactions are also of interest because of the importance of the acidic atom H12 in hydroxyethyl thiamine pyrophosphate reactions (Krampitz, 1969). Weak intermolecular C12—H12···O11/O13 bifurcated hydrogen bonds lock an alternative perchlorate into `anion hole I', characteristic of thiamine systems in the F conformation (Hu et al., 2001), with a final weak C6—H6···Cl2 interaction designating the Cl anion to `anion hole III' (Hu et al., 2000).

Experimental top

The title compound was crystallized from a liquid mixture of thiamine chloride and perchloric acid in the stoichiometric ratio of 1:1 at room temperature by the technique of slow evaporation. CAUTION: Although no problems were encountered in this work, perchlorate compounds are potentially explosive. They should be prepared in small amounts and handled with care.

Refinement top

The H atom on atom O15 of the hydroxyethyl substituent in the thiamine moiety was located and refined isotropically. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and Uiso(H) = 1.2–1.5Ueq(parent atom). The perchlorate anion shows `rotational' disorder around the axis of the Cl1—O11 bond, which leads to occupancy factors of 0.63 (2) and 0.37 (6) for O12/O13/O14 and O12'/O13'/O14', respectively.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the a axis. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. The inversion-related closed hydrogen-bonding loop formed by the cations. Hydrogen bonds are drawn as dashed lines.
Thiaminium chloride perchlorate top
Crystal data top
C12H18N4OS2+·Cl·ClO4Z = 2
Mr = 401.26F(000) = 416
Triclinic, P1Dx = 1.527 Mg m3
Dm = 1.514 Mg m3
Dm measured by flotation, using a mixture of xylene and carbon tetrachloride
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.076 (3) ÅCell parameters from 25 reflections
b = 10.896 (4) Åθ = 10.2–14.1°
c = 11.594 (5) ŵ = 0.52 mm1
α = 107.61 (3)°T = 293 K
β = 97.39 (3)°Block, colourless
γ = 111.30 (3)°0.21 × 0.19 × 0.16 mm
V = 872.7 (7) Å3
Data collection top
Nonius MACH3 sealed-tube
diffractometer
2474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.902, Tmax = 0.926l = 1313
3775 measured reflections3 standard reflections every 60 min
3065 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.338P]
where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H18N4OS2+·Cl·ClO4γ = 111.30 (3)°
Mr = 401.26V = 872.7 (7) Å3
Triclinic, P1Z = 2
a = 8.076 (3) ÅMo Kα radiation
b = 10.896 (4) ŵ = 0.52 mm1
c = 11.594 (5) ÅT = 293 K
α = 107.61 (3)°0.21 × 0.19 × 0.16 mm
β = 97.39 (3)°
Data collection top
Nonius MACH3 sealed-tube
diffractometer
2474 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.011
Tmin = 0.902, Tmax = 0.9263 standard reflections every 60 min
3775 measured reflections intensity decay: none
3065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3065 reflectionsΔρmin = 0.28 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2519 (2)0.29966 (19)0.58224 (16)0.0407 (4)
H10.36760.26840.54790.049*
C20.1398 (3)0.4370 (2)0.61258 (18)0.0394 (5)
C210.2287 (3)0.5311 (3)0.5953 (2)0.0544 (6)
H21A0.29260.54710.65870.082*
H21B0.31490.48620.51370.082*
H21C0.13590.62040.60250.082*
N30.0388 (2)0.48969 (18)0.65775 (16)0.0393 (4)
C40.1130 (3)0.4014 (2)0.67884 (18)0.0354 (4)
N410.2928 (2)0.45598 (19)0.72131 (17)0.0458 (4)
H41A0.35850.54370.73460.055*
H41B0.34520.40410.73590.055*
C50.0021 (3)0.2568 (2)0.65576 (17)0.0337 (4)
C60.1851 (3)0.2102 (2)0.60504 (18)0.0370 (4)
H60.26490.11590.58590.044*
C70.0708 (3)0.1562 (2)0.67989 (18)0.0363 (4)
H7A0.02010.05940.63100.044*
H7B0.18140.16950.65130.044*
N80.1148 (2)0.17545 (16)0.81449 (15)0.0315 (3)
C90.1692 (3)0.0820 (2)0.85155 (19)0.0365 (4)
C910.1703 (3)0.0435 (2)0.7539 (2)0.0543 (6)
H91A0.26600.01170.71430.082*
H91B0.05310.09510.69200.082*
H91C0.19250.10450.79260.082*
C100.2123 (3)0.1217 (2)0.9777 (2)0.0392 (5)
S110.18620 (8)0.27557 (6)1.04821 (5)0.04205 (15)
C120.1154 (3)0.2801 (2)0.90818 (18)0.0356 (4)
H120.08030.34930.89770.043*
C130.2753 (3)0.0508 (2)1.0559 (2)0.0493 (5)
H13A0.18190.01661.09750.059*
H13B0.28630.03111.00060.059*
C140.4567 (3)0.1467 (3)1.1534 (2)0.0521 (6)
H14A0.49100.09331.19780.063*
H14B0.55160.17981.11240.063*
O150.4466 (2)0.26551 (17)1.24080 (17)0.0539 (4)
H150.412 (4)0.244 (3)1.298 (3)0.079 (10)*
Cl10.65996 (7)0.32484 (5)0.88251 (5)0.04121 (14)
O110.8239 (2)0.42779 (16)0.87423 (15)0.0507 (4)
O120.5156 (8)0.2984 (9)0.7803 (5)0.0760 (17)0.63
O12'0.5013 (17)0.3274 (16)0.8330 (14)0.139 (7)0.37
O130.6123 (9)0.3805 (7)0.9943 (6)0.0859 (19)0.63
O13'0.6878 (18)0.3501 (17)1.0096 (11)0.142 (6)0.37
O140.6728 (14)0.1959 (11)0.8660 (11)0.096 (3)0.63
O14'0.654 (3)0.1938 (18)0.830 (2)0.133 (7)0.37
Cl20.66976 (7)0.16989 (6)0.45121 (5)0.04722 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0301 (9)0.0499 (10)0.0415 (10)0.0163 (8)0.0041 (7)0.0194 (8)
C20.0418 (12)0.0488 (12)0.0329 (10)0.0220 (10)0.0098 (9)0.0192 (9)
C210.0588 (15)0.0609 (15)0.0583 (14)0.0358 (12)0.0143 (12)0.0296 (12)
N30.0396 (10)0.0391 (9)0.0409 (9)0.0147 (8)0.0099 (8)0.0202 (8)
C40.0324 (10)0.0402 (10)0.0323 (10)0.0129 (9)0.0068 (8)0.0159 (8)
N410.0329 (9)0.0421 (10)0.0571 (11)0.0090 (8)0.0033 (8)0.0237 (9)
C50.0324 (10)0.0376 (10)0.0317 (10)0.0151 (8)0.0069 (8)0.0143 (8)
C60.0325 (10)0.0399 (11)0.0362 (10)0.0132 (9)0.0060 (8)0.0151 (9)
C70.0328 (10)0.0375 (10)0.0360 (10)0.0151 (8)0.0054 (8)0.0118 (8)
N80.0249 (8)0.0326 (8)0.0381 (9)0.0136 (7)0.0062 (7)0.0140 (7)
C90.0266 (10)0.0327 (10)0.0475 (12)0.0129 (8)0.0028 (8)0.0143 (9)
C910.0560 (14)0.0459 (13)0.0588 (14)0.0319 (11)0.0008 (11)0.0103 (11)
C100.0345 (11)0.0350 (10)0.0492 (12)0.0162 (9)0.0054 (9)0.0182 (9)
S110.0513 (3)0.0433 (3)0.0386 (3)0.0271 (3)0.0085 (2)0.0176 (2)
C120.0353 (11)0.0363 (10)0.0414 (11)0.0197 (9)0.0091 (9)0.0179 (9)
C130.0525 (14)0.0416 (12)0.0579 (14)0.0232 (11)0.0056 (11)0.0243 (11)
C140.0431 (13)0.0663 (15)0.0646 (15)0.0294 (12)0.0127 (11)0.0410 (13)
O150.0596 (11)0.0472 (9)0.0511 (10)0.0146 (8)0.0073 (8)0.0267 (8)
Cl10.0369 (3)0.0433 (3)0.0442 (3)0.0162 (2)0.0102 (2)0.0189 (2)
O110.0373 (8)0.0485 (9)0.0635 (10)0.0139 (7)0.0157 (7)0.0218 (8)
O120.031 (3)0.121 (4)0.070 (2)0.026 (2)0.0013 (17)0.043 (2)
O12'0.040 (4)0.144 (11)0.31 (2)0.054 (6)0.055 (10)0.162 (14)
O130.097 (4)0.077 (2)0.067 (4)0.021 (3)0.049 (3)0.013 (2)
O13'0.134 (11)0.186 (13)0.052 (4)0.003 (8)0.025 (6)0.062 (7)
O140.071 (3)0.057 (4)0.175 (7)0.032 (3)0.013 (4)0.067 (4)
O14'0.160 (15)0.043 (5)0.215 (16)0.045 (8)0.124 (12)0.042 (8)
Cl20.0364 (3)0.0506 (3)0.0487 (3)0.0116 (2)0.0057 (2)0.0217 (2)
Geometric parameters (Å, º) top
N1—C21.341 (3)C9—C911.492 (3)
N1—C61.346 (3)C91—H91A0.9600
N1—H10.8600C91—H91B0.9600
C2—N31.306 (3)C91—H91C0.9600
C2—C211.493 (3)C10—C131.506 (3)
C21—H21A0.9600C10—S111.731 (2)
C21—H21B0.9600S11—C121.672 (2)
C21—H21C0.9600C12—H120.9300
N3—C41.367 (3)C13—C141.505 (3)
C4—N411.310 (3)C13—H13A0.9700
C4—C51.426 (3)C13—H13B0.9700
N41—H41A0.8600C14—O151.419 (3)
N41—H41B0.8600C14—H14A0.9700
C5—C61.355 (3)C14—H14B0.9700
C5—C71.496 (3)O15—H150.82 (3)
C6—H60.9300Cl1—O12'1.348 (12)
C7—N81.487 (3)Cl1—O14'1.352 (15)
C7—H7A0.9700Cl1—O13'1.387 (11)
C7—H7B0.9700Cl1—O141.404 (9)
N8—C121.314 (2)Cl1—O131.420 (6)
N8—C91.398 (2)Cl1—O111.4281 (17)
C9—C101.351 (3)Cl1—O121.429 (6)
C2—N1—C6120.67 (18)H91B—C91—H91C109.5
C2—N1—H1119.7C9—C10—C13128.73 (19)
C6—N1—H1119.7C9—C10—S11110.62 (15)
N3—C2—N1122.93 (19)C13—C10—S11120.64 (17)
N3—C2—C21120.2 (2)C12—S11—C1091.10 (10)
N1—C2—C21116.84 (19)N8—C12—S11112.71 (14)
C2—C21—H21A109.5N8—C12—H12123.6
C2—C21—H21B109.5S11—C12—H12123.6
H21A—C21—H21B109.5C14—C13—C10113.82 (19)
C2—C21—H21C109.5C14—C13—H13A108.8
H21A—C21—H21C109.5C10—C13—H13A108.8
H21B—C21—H21C109.5C14—C13—H13B108.8
C2—N3—C4118.18 (18)C10—C13—H13B108.8
N41—C4—N3116.95 (18)H13A—C13—H13B107.7
N41—C4—C5122.22 (19)O15—C14—C13111.39 (19)
N3—C4—C5120.83 (18)O15—C14—H14A109.3
C4—N41—H41A120.0C13—C14—H14A109.3
C4—N41—H41B120.0O15—C14—H14B109.3
H41A—N41—H41B120.0C13—C14—H14B109.3
C6—C5—C4116.83 (18)H14A—C14—H14B108.0
C6—C5—C7119.90 (18)C14—O15—H15109 (2)
C4—C5—C7123.22 (17)O12'—Cl1—O14'110.4 (11)
N1—C6—C5120.37 (19)O12'—Cl1—O13'112.2 (8)
N1—C6—H6119.8O14'—Cl1—O13'104.5 (11)
C5—C6—H6119.8O12'—Cl1—O14121.3 (8)
N8—C7—C5113.38 (16)O13'—Cl1—O1487.4 (8)
N8—C7—H7A108.9O12'—Cl1—O1380.0 (7)
C5—C7—H7A108.9O14'—Cl1—O13127.8 (9)
N8—C7—H7B108.9O14—Cl1—O13113.6 (6)
C5—C7—H7B108.9O12'—Cl1—O11115.4 (5)
H7A—C7—H7B107.7O14'—Cl1—O11109.2 (9)
C12—N8—C9114.03 (16)O13'—Cl1—O11104.6 (6)
C12—N8—C7125.33 (16)O14—Cl1—O11111.3 (5)
C9—N8—C7120.58 (16)O13—Cl1—O11111.3 (3)
C10—C9—N8111.52 (17)O14'—Cl1—O1292.4 (10)
C10—C9—C91129.09 (19)O13'—Cl1—O12137.7 (6)
N8—C9—C91119.38 (19)O14—Cl1—O12107.6 (5)
C9—C91—H91A109.5O13—Cl1—O12106.6 (3)
C9—C91—H91B109.5O11—Cl1—O12105.9 (3)
H91A—C91—H91B109.5Cl1—O12'—O1351.8 (5)
C9—C91—H91C109.5Cl1—O13—O12'48.2 (4)
H91A—C91—H91C109.5
C6—N1—C2—N34.4 (3)O13'—Cl1—O12—O12'19 (2)
C6—N1—C2—C21174.23 (19)O14—Cl1—O12—O12'125.6 (19)
N1—C2—N3—C42.3 (3)O13—Cl1—O12—O12'3 (2)
C21—C2—N3—C4176.23 (19)O11—Cl1—O12—O12'115.2 (18)
C2—N3—C4—N41178.41 (18)Cl1—O12—O12'—O134 (2)
C2—N3—C4—C51.9 (3)O14'—Cl1—O12'—O1250 (2)
N41—C4—C5—C6176.31 (18)O13'—Cl1—O12'—O12166.0 (17)
N3—C4—C5—C64.0 (3)O14—Cl1—O12'—O1265 (2)
N41—C4—C5—C71.2 (3)O13—Cl1—O12'—O12176.7 (19)
N3—C4—C5—C7178.53 (17)O11—Cl1—O12'—O1274 (2)
C2—N1—C6—C52.0 (3)O14'—Cl1—O12'—O13126.7 (10)
C4—C5—C6—N12.0 (3)O13'—Cl1—O12'—O1310.7 (10)
C7—C5—C6—N1179.59 (18)O14—Cl1—O12'—O13111.7 (8)
C6—C5—C7—N8103.4 (2)O11—Cl1—O12'—O13108.9 (4)
C4—C5—C7—N879.2 (2)O12—Cl1—O12'—O13176.7 (19)
C5—C7—N8—C128.6 (3)O12'—Cl1—O13—O13'162.0 (16)
C5—C7—N8—C9174.45 (16)O14'—Cl1—O13—O13'53.9 (19)
C12—N8—C9—C100.5 (2)O14—Cl1—O13—O13'42.1 (16)
C7—N8—C9—C10176.71 (17)O11—Cl1—O13—O13'84.5 (15)
C12—N8—C9—C91178.61 (19)O12—Cl1—O13—O13'160.5 (14)
C7—N8—C9—C914.2 (3)O14'—Cl1—O13—O12'108.1 (12)
N8—C9—C10—C13179.5 (2)O13'—Cl1—O13—O12'162.0 (16)
C91—C9—C10—C130.5 (4)O14—Cl1—O13—O12'119.9 (7)
N8—C9—C10—S110.5 (2)O11—Cl1—O13—O12'113.5 (6)
C91—C9—C10—S11179.48 (19)O12—Cl1—O13—O12'1.5 (9)
C9—C10—S11—C120.98 (16)O12—O12'—O13—O13'14 (4)
C13—C10—S11—C12178.98 (18)Cl1—O12'—O13—O13'19.0 (17)
C9—N8—C12—S111.3 (2)O12—O12'—O13—Cl15 (3)
C7—N8—C12—S11175.79 (14)O12'—O13—O13'—Cl114.9 (13)
C10—S11—C12—N81.30 (16)O12'—Cl1—O13'—O1319.1 (17)
C9—C10—C13—C14123.7 (3)O14'—Cl1—O13'—O13138.7 (15)
S11—C10—C13—C1456.3 (3)O14—Cl1—O13'—O13142.0 (14)
C10—C13—C14—O1561.2 (3)O11—Cl1—O13'—O13106.6 (13)
O14'—Cl1—O12—O12'134 (2)O12—Cl1—O13'—O1328 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.862.243.100 (2)176
N41—H41A···O15i0.862.012.854 (3)168
N41—H41B···O120.862.193.048 (8)172
N41—H41B···O120.862.132.955 (12)161
O15—H15···Cl2ii0.82 (3)2.24 (3)3.056 (2)174 (3)
C12—H12···O11i0.932.783.229 (3)111
C12—H12···O13i0.932.843.273 (7)110
C6—H6···Cl2iii0.932.853.687 (3)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H18N4OS2+·Cl·ClO4
Mr401.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.076 (3), 10.896 (4), 11.594 (5)
α, β, γ (°)107.61 (3), 97.39 (3), 111.30 (3)
V3)872.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerNonius MACH3 sealed-tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.902, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
3775, 3065, 2474
Rint0.011
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.03
No. of reflections3065
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Bruker, 2000), SHELXTL and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
N1—C21.341 (3)N1—C61.346 (3)
C2—N1—C6120.67 (18)
C4—C5—C7—N879.2 (2)S11—C10—C13—C1456.3 (3)
C5—C7—N8—C128.6 (3)C10—C13—C14—O1561.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.862.243.100 (2)176
N41—H41A···O15i0.862.012.854 (3)168
N41—H41B···O120.862.193.048 (8)172
N41—H41B···O12'0.862.132.955 (12)161
O15—H15···Cl2ii0.82 (3)2.24 (3)3.056 (2)174 (3)
C12—H12···O11i0.932.783.229 (3)111
C12—H12···O13i0.932.843.273 (7)110
C6—H6···Cl2iii0.932.853.687 (3)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds