Download citation
Download citation
link to html
The title compound, [Nd42-C9H7O3)43-OH)4(H2O)8](ClO4)4·2C2H6O, was synthesized from the ligand-controlled hydrolysis of Nd(ClO4)3. The cation, which lies on a crystallographic twofold axis, has four ninefold coordinated NdIII ions and four triply bridging hydr­oxy groups occupying alternate vertices of a distorted cube and supported by four μ2-C9H7O3 ligands. The crystal structure indicates that 2,6-diformyl-4-methyl­phenol is a useful supporting ligand in the synthesis of high-nuclearity LnIII clusters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041139/sj6172sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041139/sj6172Isup2.hkl
Contains datablock I

CCDC reference: 296660

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.009 Å
  • Some non-H atoms missing
  • Disorder in main residue
  • R factor = 0.043
  • wR factor = 0.122
  • Data-to-parameter ratio = 22.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 5.50 Ratio
Author Response: Atom belongs to disordered ligand which been modelled over two sites
PLAT221_ALERT_4_A Large Solvent/Anion  O     Ueq(max)/Ueq(min) ...       5.27 Ratio
Author Response: Atom belongs to disordered ligand which been modelled over two sites
PLAT222_ALERT_3_A Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       7.82 Ratio
Author Response: Atom belongs to disordered ligand which been modelled over two sites

Alert level B CHEMW03_ALERT_2_B WARNING: The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.95 <> 1.05 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_weight 1931.64 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 36.00 432.40 H 1.01 48.00 48.38 O 16.00 40.00 639.96 Cl 35.45 4.00 141.81 Nd 144.24 4.00 576.96 Calculated formula weight 1839.51 PLAT043_ALERT_1_B Check Reported Molecular Weight ................ 1931.64
Author Response: Reported Molecular Weight includes two molecules of ethanol which were removed using the SQUEEZE option in PLATON (Spek, 2003)
PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) .......          1
Author Response: Disordered atom modelled with isotropic diplacement parameters
PLAT241_ALERT_2_B Check High      Ueq as Compared to Neighbors for        C10
Author Response: Atom belongs to disordered ligand which been modelled over two sites
PLAT420_ALERT_2_B D-H Without Acceptor       O11    -   H11B   ...          ?
Author Response: The acceptor O atom could be from the hydroxy group od the disordered ethanol which has been removed.

Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT165_ALERT_3_C Nr. of Status R Flagged Non-Hydrogen Atoms ..... 1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O18 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.10 PLAT301_ALERT_3_C Main Residue Disorder ......................... 15.00 Perc. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 29.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT602_ALERT_4_C VERY LARGE Solvent Accessible VOID(S) in Structure !
Author Response: The removed disordered ethanol molecules reside in these voids.
PLAT751_ALERT_4_C Bond    Calc     2.62746, Rep    2.627(3) ......  Senseless su
              ND2  -O12     1.555   1.555
PLAT752_ALERT_4_C Angle   Calc      146.22, Rep  146.21(10) ......  Senseless su
              O8   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc       69.44, Rep   69.45(11) ......  Senseless su
              O6   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc       75.18, Rep   75.19(10) ......  Senseless su
              O9   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc       67.91, Rep   67.92(11) ......  Senseless su
              O1   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc      131.69, Rep  131.68(12) ......  Senseless su
              O13  -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc      118.72, Rep   118.72(6) ......  Senseless su
              O7   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc      115.51, Rep  115.50(10) ......  Senseless su
              O2   -ND2  -O12     1.555   1.555   1.555
PLAT752_ALERT_4_C Angle   Calc      114.73, Rep   114.73(7) ......  Senseless su
              O12  -ND2  -ND1     1.555   1.555   1.555
PLAT757_ALERT_4_C D...A   Calc     2.76446, Rep    2.764(5) ......  Senseless su
              O10  -O12     1.555   2.555
PLAT757_ALERT_4_C D...A   Calc     2.81912, Rep    2.819(6) ......  Senseless su
              O12  -O16     1.555   2.555
PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) .       1.14 Ratio
PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ......       5.10 Deg.
              C12  -O5   -C12     1.555   1.555   2.555

Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C40 H60 Cl4 Nd4 O42 Atom count from _chemical_formula_moiety:C42 H66 Cl8 Nd4 O58 FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C40 H60 Cl4 Nd4 O42 Atom count from the _atom_site data: C36 H48 Cl4 Nd4 O40 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C40 H60 Cl4 Nd4 O42 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 160.00 144.00 16.00 H 240.00 192.00 48.00 Cl 16.00 16.00 0.00 Nd 16.00 16.00 0.00 O 168.00 160.00 8.00
3 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 27 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 16 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

There is currently tremendous interest in the synthesis and characterization of finite polylanthanide(III) entities with nanoscopic dimensions (Zheng, 2001; Wang et al., 2002). This interest lies in several application fields, since lanthanide clusters are potential precurors for ceramics, catalysts and thin-film coatings (Hubert-Pfalzgraf, 1995). Nanoclusters with mutually interacting LnIII ions are also expected to yield new materials with greater versatility resulting from unusual enhancements in magnetic, catalytic, optical and electronic properties (Thompson et al., 2003, 2001). The title compound, (I), is one of a series of similar LnIII compounds synthesized in an investigation into the formation chemistry of nanoclusters which feature commonly encountered aggregation motifs such as [Ln4(OH)4]8+. We have previously determined the structure of the cation in the title structure as the trifluoromethanesulfonate (Singh-Wilmot et al., 2005).

The cation in (I) features four NdIII and four µ3-hydroxo groups occupying alternate vertices of a distorted cube (Fig. 1). Selected bond distances are given in Table 1. Each NdIII ion is in a ninefold coordination polyhedron of an approximate tricapped trigonal prism and approximate D3 h symmetry, with a shortest metal–metal contact of Nd2···Nd2i = 3.7003 (4) Å [symmetry code: (i) −x, y, 1/2 − z]. This distance is comparable with metal–metal distances seen in other complexes containing a similar cubane-type [Ln43-OH)4]8+ core, for example ca 3.83 Å for the shortest Sm···Sm distance in [Sm43-OH)4(Gly)5(H2O)11]) (Evans et al., 2000). Nd—O(phenolate) distances are in the range 2.546 (3)–2.597 (3) Å, while the Nd—O(carbonyl) distances are in the range 2.441 (4)–2.484 (4) Å. The range of Nd—O(µ3-OH) distances [2.393 (3)–2.472 (3) Å] compares well with those in [Nd43-OH)4(Ala)6(H2O)10] (ca 2.43 Å; Zheng & Wang, 2000).

Experimental top

NaOH (2 mmol, 0.08 g) in methanol (10 ml) was added in five portions to a boiling solution of Nd(ClO4)3.nH2O (8 mmol, 1.346 g N d2O3) in methanol (10 ml). A solution of 2,6-diformyl-4-methylphenol (4 mmol, 0.6566 g) and NaOH (4 mmol, 0.16 g) in methanol (150 ml) was then added to the boiling solution in 20 ml portions. After each addition of sodium cresolate, the mixture was boiled until approximately 10 ml of solution remained before adding the next 20 ml portion. The pH of the mixture at this point was approximately 6.5. The final mixture was boiled until 5 ml of solution remained. It was then cooled and filtered and approximately 10 ml of ethanol was added. The resulting mixture was left in an open flask at room temperature. The onset of crystallization was obvious after 3 d but a further 2 d were allowed for the process to proceed to completion. Yellow blocks of (I) were recovered in 20% yield (calculation based on LnIII). The crystals lost solvent and crumbled to an amorphous solid on exposure to air. CAUTION: Although no problems were encountered in this work, perchlorate compounds are potentially explosive. They should be prepared in small amounts and handled with care.

Refinement top

One of the percholate anions (Cl2/O18/O19/O20/O21) is disordered over two sites, with an occupancy ratio of 0.577 (4)/0.423 (4) for the major and minor components. Both components of disorder have the site of O18 in common. In addition, one of the µ2-C9H7O3 ligands (containing the benzene ring C11/C11A/C12/C13/C13A/C14) is also disordered; initial refinement gave equal values within experimental error for the two disorder components; the occupancy ratio was therefore fixed at 0.5:0.5 in the final cycles. This disordered ligand is bisected by the crystallographic twofold axis but the disorder is not imposed by the crystallographic symmetry. All H atoms bonded to C atoms were placed in calculated positions, with C—H distances of 0.95 or 0.98 Å (methyl), and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. The H atoms of the bridging hydroxyl ligands were included with O—H = 1.00 Å and Uiso(H) = 1.2Ueq(O). All other H atoms bonded to O atoms were placed in calculated positions based on an ideal location for O—H···O hydrogen bonding. The O—H distance was fixed at 0.84 Å with Uiso(H) = 1.5Ueq(O). During the refinement, areas of electron density were located in difference Fourier maps that were assigned as ethanol solvent molecules. The peak pattern of electron density suggested that the solvent molecules were highly disordered, and attempts to model the disorder were unsuccessful. In the final cycles of refinement, the contribution to electron density corresesponding to the disordered ethanol molecules was removed from the observed data using the SQUEEZE option in PLATON (Spek, 2003). The resulting data vastly improved the precision of the geometric parameters of the remaining structure. The contributions of two molecules of ethanol have been included in the molecular formula. The hydroxy groups of the ethanol molecules, if present, would contribute to the hydrogen-bonding motif, and for that reason the hydrogen bonding in the title structure is not discussed in detail. In the final difference Fourier map, the three largest density peaks in the range 1.64–1.06 e Å3 were located within 1.23 Å of the disordered perchlorate anion, and the deepest hole of −1.16 e Å3 was 0.80 Å from Nd1.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2001); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. A view of the cation of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms are not shown. Atoms labelled with the suffix 'A' are related by the symmetry operator (−x, y, −z + 1/2)
Tetrakis(µ2-2,6-diformyl-4-methylphenolato)tetra-µ3-hydroxo- tetrakis[diaquaneodymium(III)] tetrakis(perchlorate) ethanol disolvate top
Crystal data top
[Nd4(C9H7O3)4(OH)4(H2O)8](ClO4)4·2C2H6OF(000) = 3776
Mr = 1931.64Dx = 1.620 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8715 reflections
a = 20.9933 (3) Åθ = 2.6–27.5°
b = 24.7385 (5) ŵ = 2.80 mm1
c = 17.6893 (3) ÅT = 150 K
β = 120.469 (1)°Block, yellow
V = 7918.1 (2) Å30.32 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area detector
diffractometer
8998 independent reflections
Radiation source: fine-focus sealed tube7708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ scans and ω scans with κ offsetsh = 2727
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 3232
Tmin = 0.430, Tmax = 0.497l = 2219
31251 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0625P)2 + 41.2001P]
where P = (Fo2 + 2Fc2)/3
8998 reflections(Δ/σ)max < 0.001
400 parametersΔρmax = 1.64 e Å3
55 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Nd4(C9H7O3)4(OH)4(H2O)8](ClO4)4·2C2H6OV = 7918.1 (2) Å3
Mr = 1931.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.9933 (3) ŵ = 2.80 mm1
b = 24.7385 (5) ÅT = 150 K
c = 17.6893 (3) Å0.32 × 0.28 × 0.25 mm
β = 120.469 (1)°
Data collection top
Bruker Nonius KappaCCD area detector
diffractometer
8998 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
7708 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 0.497Rint = 0.037
31251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04355 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0625P)2 + 41.2001P]
where P = (Fo2 + 2Fc2)/3
8998 reflectionsΔρmax = 1.64 e Å3
400 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.103278 (13)0.226744 (11)0.186982 (16)0.02998 (10)
Nd20.027319 (12)0.108328 (10)0.334350 (15)0.02776 (10)
O10.0765 (2)0.11184 (16)0.4338 (2)0.0395 (8)
O20.14590 (17)0.16722 (15)0.2703 (2)0.0344 (7)
O30.2398 (2)0.23177 (18)0.1173 (2)0.0439 (9)
O40.1409 (7)0.3076 (5)0.0936 (8)0.052 (3)*0.50
O4A0.1476 (7)0.3110 (4)0.3937 (8)0.052 (3)*0.50
O50.00000.2977 (2)0.25000.0396 (11)*
O60.0205 (2)0.02579 (15)0.4208 (2)0.0391 (8)
O70.00000.03688 (18)0.25000.0324 (10)
O80.07912 (17)0.12937 (14)0.1823 (2)0.0284 (6)
H80.12440.10790.14260.034*
O90.00252 (16)0.20477 (14)0.3318 (2)0.0285 (7)
H90.00320.22590.37960.034*
O100.1661 (2)0.20022 (19)0.0304 (2)0.0482 (10)
H10C0.19250.22320.00780.072*
H10D0.15120.17590.00980.072*
O110.13126 (15)0.28884 (12)0.27878 (18)0.0536 (10)
H11A0.12190.27570.32710.080*
H11B0.10520.31370.27610.080*
O120.07556 (15)0.13128 (12)0.49605 (18)0.0387 (8)
H12A0.09670.10570.53120.058*
H12B0.06110.15500.51800.058*
O130.1336 (2)0.04277 (17)0.2737 (3)0.0479 (9)
H13C0.14770.02600.22650.072*
H13D0.13810.01880.30430.072*
C10.2034 (2)0.1666 (2)0.2790 (3)0.0326 (10)
C20.2017 (3)0.1420 (2)0.3531 (3)0.0347 (10)
C30.2658 (3)0.1411 (2)0.3600 (4)0.0437 (13)
H3A0.26280.12500.41050.052*
C40.3324 (3)0.1625 (3)0.2971 (5)0.0513 (15)
C50.3348 (3)0.1861 (3)0.2255 (4)0.0534 (16)
H5A0.38040.20070.18110.064*
C60.2728 (3)0.1895 (3)0.2149 (4)0.0420 (12)
C70.1373 (3)0.1197 (2)0.4260 (3)0.0386 (11)
H7A0.14200.10960.47480.046*
C80.3995 (4)0.1604 (4)0.3076 (6)0.073 (2)
H8A0.44440.16180.24970.109*
H8B0.39870.19140.34260.109*
H8C0.39880.12680.33740.109*
C90.2853 (3)0.2185 (3)0.1380 (4)0.0512 (15)
H9A0.33500.22870.09830.061*
C100.1264 (8)0.3536 (7)0.1237 (8)0.103 (11)*0.50
H10A0.16620.37770.09040.123*0.50
C110.0651 (4)0.3807 (4)0.1961 (5)0.057 (3)*0.50
C120.0002 (5)0.3493 (3)0.2531 (6)0.060 (2)*0.50
C130.0683 (8)0.4366 (5)0.2112 (8)0.073 (4)*0.50
H13A0.11200.45580.17220.087*0.50
C10A0.1278 (6)0.3582 (5)0.3887 (8)0.052 (4)*0.50
H10B0.16190.38240.43210.063*0.50
C11A0.0578 (6)0.3803 (5)0.3235 (7)0.066 (4)*0.50
C13A0.0519 (8)0.4362 (5)0.3357 (9)0.078 (4)*0.50
H13B0.09210.45440.38330.094*0.50
C140.0113 (6)0.4648 (6)0.2795 (7)0.085 (5)*0.50
C150.0180 (10)0.5246 (7)0.2923 (11)0.177 (14)*0.50
H15A0.01750.54470.28260.266*0.50
H15B0.00750.53110.35220.266*0.50
H15C0.06820.53680.25040.266*0.50
C160.0191 (3)0.0224 (2)0.4036 (3)0.0389 (11)
H16A0.02640.04700.44850.047*
C170.00000.0147 (2)0.25000.0324 (14)
C180.0074 (3)0.0459 (2)0.3228 (3)0.0378 (11)
C190.0070 (4)0.1030 (2)0.3205 (4)0.0516 (15)
H19A0.01180.12220.36960.062*
C200.00000.1322 (4)0.25000.061 (2)
C210.00000.1934 (4)0.25000.085 (4)
H21A0.02420.20660.18940.127*0.50
H21B0.02680.20660.27830.127*0.50
H21C0.05100.20660.28230.127*0.50
Cl10.02244 (8)0.25412 (7)0.02193 (10)0.0527 (4)
O140.0939 (4)0.2368 (3)0.0294 (8)0.155 (5)
O150.0054 (6)0.2765 (3)0.0325 (5)0.115 (3)
O160.0269 (3)0.2106 (2)0.0698 (3)0.0719 (15)
O170.0176 (3)0.2957 (2)0.0789 (3)0.0623 (12)
Cl20.22322 (13)0.01002 (11)0.47137 (18)0.0525 (8)0.577 (4)
O180.2017 (5)0.0118 (3)0.5303 (5)0.120 (3)
O190.2059 (5)0.0655 (4)0.4521 (11)0.141 (7)0.577 (4)
O200.1816 (6)0.0144 (5)0.3858 (6)0.093 (3)0.577 (4)
O210.2993 (4)0.0008 (6)0.5071 (8)0.102 (4)0.577 (4)
Cl2A0.2145 (3)0.0225 (2)0.6070 (3)0.0799 (16)0.423 (4)
O19A0.1495 (4)0.0416 (4)0.6196 (5)0.037 (2)0.423 (4)
O20A0.2328 (15)0.0773 (7)0.5976 (19)0.152 (9)*0.423 (4)
O21A0.2763 (14)0.0035 (13)0.6900 (14)0.195 (12)*0.423 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02135 (14)0.04034 (17)0.02491 (15)0.00338 (9)0.00928 (11)0.00406 (10)
Nd20.02325 (14)0.03795 (16)0.02207 (14)0.00186 (9)0.01149 (11)0.00229 (9)
O10.0303 (17)0.058 (2)0.0329 (19)0.0096 (16)0.0180 (16)0.0085 (16)
O20.0217 (15)0.051 (2)0.0314 (17)0.0047 (14)0.0140 (14)0.0071 (15)
O30.0270 (17)0.070 (3)0.0312 (19)0.0066 (16)0.0121 (15)0.0104 (18)
O60.046 (2)0.041 (2)0.0283 (18)0.0045 (16)0.0171 (16)0.0026 (15)
O70.032 (2)0.036 (2)0.029 (2)0.0000.016 (2)0.000
O80.0220 (14)0.0371 (17)0.0242 (15)0.0003 (13)0.0104 (13)0.0022 (13)
O90.0216 (14)0.0388 (17)0.0240 (15)0.0007 (12)0.0108 (13)0.0050 (13)
O100.041 (2)0.069 (3)0.0272 (18)0.0221 (19)0.0117 (16)0.0093 (18)
O110.045 (2)0.066 (3)0.048 (2)0.007 (2)0.022 (2)0.006 (2)
O120.0358 (18)0.051 (2)0.0270 (17)0.0054 (16)0.0139 (15)0.0021 (16)
O130.042 (2)0.055 (2)0.048 (2)0.0087 (18)0.0232 (19)0.0044 (19)
C10.022 (2)0.046 (3)0.027 (2)0.0007 (19)0.0113 (18)0.000 (2)
C20.028 (2)0.045 (3)0.035 (3)0.003 (2)0.019 (2)0.001 (2)
C30.037 (3)0.056 (3)0.052 (3)0.001 (2)0.032 (3)0.007 (3)
C40.034 (3)0.063 (4)0.067 (4)0.003 (3)0.033 (3)0.010 (3)
C50.028 (3)0.076 (4)0.056 (4)0.008 (3)0.022 (3)0.016 (3)
C60.023 (2)0.061 (3)0.041 (3)0.005 (2)0.015 (2)0.010 (3)
C70.038 (3)0.052 (3)0.032 (3)0.004 (2)0.022 (2)0.008 (2)
C80.042 (3)0.099 (6)0.097 (6)0.016 (3)0.050 (4)0.037 (5)
C90.025 (2)0.081 (4)0.041 (3)0.009 (3)0.011 (2)0.014 (3)
C160.040 (3)0.044 (3)0.030 (2)0.006 (2)0.016 (2)0.008 (2)
C170.028 (3)0.036 (3)0.031 (3)0.0000.013 (3)0.000
C180.043 (3)0.036 (3)0.033 (3)0.004 (2)0.018 (2)0.004 (2)
C190.071 (4)0.040 (3)0.051 (4)0.001 (3)0.037 (3)0.006 (3)
C200.093 (8)0.041 (5)0.064 (6)0.0000.051 (6)0.000
C210.152 (13)0.045 (5)0.079 (8)0.0000.074 (9)0.000
Cl10.0417 (7)0.0663 (9)0.0414 (7)0.0043 (6)0.0147 (6)0.0137 (7)
O140.046 (3)0.110 (6)0.230 (11)0.009 (3)0.012 (5)0.083 (7)
O150.219 (9)0.081 (4)0.105 (5)0.006 (5)0.126 (7)0.008 (4)
O160.091 (4)0.074 (3)0.054 (3)0.029 (3)0.039 (3)0.002 (3)
O170.058 (3)0.080 (3)0.054 (3)0.011 (2)0.032 (2)0.015 (2)
Cl20.0381 (13)0.0563 (15)0.0496 (15)0.0048 (10)0.0123 (11)0.0068 (11)
O180.169 (8)0.100 (5)0.122 (7)0.028 (5)0.096 (6)0.030 (5)
O190.051 (5)0.059 (6)0.211 (16)0.000 (5)0.007 (7)0.070 (8)
O200.090 (7)0.089 (7)0.056 (6)0.004 (6)0.006 (5)0.006 (5)
O210.036 (5)0.136 (11)0.108 (9)0.009 (5)0.018 (5)0.018 (8)
Cl2A0.071 (3)0.089 (3)0.068 (3)0.013 (2)0.026 (2)0.018 (3)
O19A0.019 (3)0.063 (6)0.024 (4)0.006 (3)0.007 (3)0.028 (4)
Geometric parameters (Å, º) top
Nd1—O92.416 (3)C3—H3A0.9500
Nd1—O4Ai2.429 (12)C4—C51.372 (9)
Nd1—O42.456 (12)C4—C81.512 (7)
Nd1—O9i2.467 (3)C5—C61.410 (7)
Nd1—O82.472 (3)C5—H5A0.9500
Nd1—O102.478 (4)C6—C91.440 (8)
Nd1—O32.484 (4)C7—H7A0.9500
Nd1—O112.512 (3)C8—H8A0.9800
Nd1—O22.546 (3)C8—H8B0.9800
Nd1—O52.565 (3)C8—H8C0.9800
Nd1—Nd23.7019 (4)C9—H9A0.9500
Nd1—Nd1i3.7376 (5)C10—C111.441 (6)
Nd2—O82.392 (3)C10—H10A0.9500
Nd2—O62.441 (4)C11—C131.415 (7)
Nd2—O92.447 (3)C11—C121.444 (6)
Nd2—O12.452 (3)C12—C11A1.444 (6)
Nd2—O8i2.453 (3)C13—C141.382 (7)
Nd2—O132.516 (4)C13—H13A0.9500
Nd2—O72.559 (3)C10A—C11A1.440 (6)
Nd2—O22.597 (3)C10A—H10B0.9500
Nd2—O122.627 (3)C11A—C13A1.415 (7)
Nd2—Nd2i3.7003 (4)C13A—C141.383 (7)
O1—C71.228 (6)C13A—H13B0.9500
O2—C11.292 (5)C14—C151.515 (13)
O3—C91.228 (7)C15—H15A0.9800
O4—C101.227 (6)C15—H15B0.9800
O4A—C10A1.227 (6)C15—H15C0.9800
O4A—Nd1i2.429 (12)C16—C181.444 (6)
O5—C121.276 (7)C16—H16A0.9500
O5—C12i1.276 (7)C17—C181.440 (5)
O5—Nd1i2.565 (3)C17—C18i1.440 (5)
O6—C161.227 (6)C18—C191.414 (7)
O7—C171.276 (7)C19—C201.383 (7)
O7—Nd2i2.559 (3)C19—H19A0.9500
O8—Nd2i2.453 (3)C20—C19i1.383 (7)
O8—H81.0000C20—C211.515 (13)
O9—Nd1i2.467 (3)C21—H21A0.9800
O9—H91.0000C21—H21B0.9800
O10—H10C0.8399C21—H21C0.9800
O10—H10D0.8400Cl1—O141.370 (6)
O11—H11A0.8401Cl1—O171.406 (5)
O11—H11B0.8398Cl1—O161.436 (5)
O12—H12A0.8399Cl1—O151.464 (6)
O12—H12B0.8399Cl2—O211.414 (8)
O13—H13C0.8402Cl2—O191.417 (8)
O13—H13D0.8401Cl2—O181.436 (7)
C1—C21.429 (7)Cl2—O201.442 (9)
C1—C61.431 (7)O18—Cl2A1.505 (9)
C2—C31.411 (6)Cl2A—O20A1.440 (14)
C2—C71.424 (7)Cl2A—O21A1.458 (15)
C3—C41.376 (9)Cl2A—O19A1.563 (8)
O9—Nd1—O4Ai133.2 (3)C12—O5—C12i5.1 (7)
O9—Nd1—O4135.0 (3)C12—O5—Nd1133.0 (4)
O4Ai—Nd1—O47.7 (4)C12i—O5—Nd1133.3 (4)
O9—Nd1—O9i74.28 (12)C12—O5—Nd1i133.3 (4)
O4Ai—Nd1—O9i102.3 (3)C12i—O5—Nd1i133.0 (4)
O4—Nd1—O9i95.4 (3)Nd1—O5—Nd1i93.56 (16)
O9—Nd1—O874.46 (11)C16—O6—Nd2135.0 (3)
O4Ai—Nd1—O8147.2 (3)C17—O7—Nd2133.69 (7)
O4—Nd1—O8140.6 (3)C17—O7—Nd2i133.69 (7)
O9i—Nd1—O864.32 (11)Nd2—O7—Nd2i92.62 (15)
O9—Nd1—O10144.03 (12)Nd2—O8—Nd2i99.58 (11)
O4Ai—Nd1—O1075.1 (3)Nd2—O8—Nd199.10 (12)
O4—Nd1—O1069.9 (3)Nd2i—O8—Nd1115.20 (12)
O9i—Nd1—O1078.24 (12)Nd2—O8—H8113.7
O8—Nd1—O1072.92 (12)Nd2i—O8—H8113.7
O9—Nd1—O3135.02 (11)Nd1—O8—H8113.7
O4Ai—Nd1—O370.3 (3)Nd1—O9—Nd299.14 (11)
O4—Nd1—O374.3 (3)Nd1—O9—Nd1i99.90 (12)
O9i—Nd1—O3146.66 (12)Nd2—O9—Nd1i115.59 (12)
O8—Nd1—O3103.70 (12)Nd1—O9—H9113.5
O10—Nd1—O368.43 (13)Nd2—O9—H9113.5
O9—Nd1—O1179.53 (10)Nd1i—O9—H9113.5
O4Ai—Nd1—O1173.1 (3)Nd1—O10—H10C118.7
O4—Nd1—O1180.6 (3)Nd1—O10—H10D124.7
O9i—Nd1—O11138.01 (10)H10C—O10—H10D112.0
O8—Nd1—O11137.48 (10)Nd1—O11—H11A114.3
O10—Nd1—O11135.93 (11)Nd1—O11—H11B92.2
O3—Nd1—O1172.60 (12)H11A—O11—H11B121.2
O9—Nd1—O268.39 (11)Nd2—O12—H12A118.5
O4Ai—Nd1—O2134.0 (3)Nd2—O12—H12B111.3
O4—Nd1—O2140.6 (3)H12A—O12—H12B111.3
O9i—Nd1—O2123.73 (11)Nd2—O13—H13C122.0
O8—Nd1—O266.06 (11)Nd2—O13—H13D123.1
O10—Nd1—O2110.52 (13)H13C—O13—H13D101.2
O3—Nd1—O270.15 (12)O2—C1—C2121.5 (4)
O11—Nd1—O273.33 (11)O2—C1—C6122.5 (4)
O9—Nd1—O566.45 (10)C2—C1—C6115.9 (4)
O4Ai—Nd1—O569.8 (3)C3—C2—C7115.1 (5)
O4—Nd1—O569.3 (3)C3—C2—C1120.3 (5)
O9i—Nd1—O565.73 (10)C7—C2—C1124.5 (4)
O8—Nd1—O5122.64 (11)C4—C3—C2123.1 (5)
O10—Nd1—O5121.37 (11)C4—C3—H3A118.4
O3—Nd1—O5133.64 (13)C2—C3—H3A118.4
O11—Nd1—O573.94 (8)C5—C4—C3117.2 (5)
O2—Nd1—O5127.76 (8)C5—C4—C8121.8 (6)
O9—Nd1—Nd240.75 (8)C3—C4—C8121.1 (6)
O4Ai—Nd1—Nd2173.1 (3)C4—C5—C6122.9 (5)
O4—Nd1—Nd2174.3 (3)C4—C5—H5A118.5
O9i—Nd1—Nd279.90 (7)C6—C5—H5A118.5
O8—Nd1—Nd239.65 (7)C5—C6—C1120.5 (5)
O10—Nd1—Nd2111.89 (10)C5—C6—C9114.6 (5)
O3—Nd1—Nd2111.46 (9)C1—C6—C9124.8 (5)
O11—Nd1—Nd2100.79 (7)O1—C7—C2128.2 (5)
O2—Nd1—Nd244.51 (7)O1—C7—H7A115.9
O5—Nd1—Nd2105.57 (7)C2—C7—H7A115.9
O9—Nd1—Nd1i40.56 (7)C4—C8—H8A109.5
O4Ai—Nd1—Nd1i109.5 (3)C4—C8—H8B109.5
O4—Nd1—Nd1i106.3 (3)H8A—C8—H8B109.5
O9i—Nd1—Nd1i39.55 (7)C4—C8—H8C109.5
O8—Nd1—Nd1i79.88 (7)H8A—C8—H8C109.5
O10—Nd1—Nd1i117.74 (9)H8B—C8—H8C109.5
O3—Nd1—Nd1i173.74 (10)O3—C9—C6128.1 (5)
O11—Nd1—Nd1i101.26 (6)O3—C9—H9A115.9
O2—Nd1—Nd1i107.26 (7)C6—C9—H9A115.9
O5—Nd1—Nd1i43.22 (8)O4—C10—C11137.0 (18)
Nd2—Nd1—Nd1i67.960 (6)O4—C10—H10A111.5
O8—Nd2—O6133.98 (12)C11—C10—H10A111.5
O8—Nd2—O975.33 (11)C13—C11—C10121.1 (11)
O6—Nd2—O9143.45 (12)C13—C11—C12120.8 (10)
O8—Nd2—O1133.04 (11)C10—C11—C12118.0 (13)
O6—Nd2—O176.66 (12)O5—C12—C11A123.3 (8)
O9—Nd2—O198.62 (12)O5—C12—C11122.1 (9)
O8—Nd2—O8i75.01 (12)C11A—C12—C11113.5 (7)
O6—Nd2—O8i98.18 (12)C14—C13—C11123.8 (13)
O9—Nd2—O8i64.89 (11)C14—C13—H13A118.1
O1—Nd2—O8i145.01 (12)C11—C13—H13A118.1
O8—Nd2—O1382.05 (13)O4A—C10A—C11A126.2 (14)
O6—Nd2—O1373.86 (14)O4A—C10A—H10B116.9
O9—Nd2—O13140.48 (12)C11A—C10A—H10B116.9
O1—Nd2—O1373.95 (14)C13A—C11A—C10A112.5 (10)
O8i—Nd2—O13138.63 (12)C13A—C11A—C12123.5 (11)
O8—Nd2—O766.61 (10)C10A—C11A—C12124.1 (12)
O6—Nd2—O769.20 (10)C14—C13A—C11A121.1 (14)
O9—Nd2—O7123.36 (10)C14—C13A—H13B119.5
O1—Nd2—O7138.02 (12)C11A—C13A—H13B119.5
O8i—Nd2—O765.76 (9)C13—C14—C13A117.4 (15)
O13—Nd2—O773.67 (11)C13—C14—C15121.3 (8)
O8—Nd2—O266.36 (11)C13A—C14—C15121.3 (8)
O6—Nd2—O2137.84 (12)O6—C16—C18127.4 (5)
O9—Nd2—O267.10 (11)O6—C16—H16A116.3
O1—Nd2—O268.50 (11)C18—C16—H16A116.3
O8i—Nd2—O2123.97 (11)O7—C17—C18122.4 (3)
O13—Nd2—O274.27 (13)O7—C17—C18i122.4 (3)
O7—Nd2—O2125.60 (8)C18—C17—C18i115.2 (6)
O8—Nd2—O12146.21 (10)C19—C18—C17120.9 (5)
O6—Nd2—O1269.45 (11)C19—C18—C16115.2 (5)
O9—Nd2—O1275.19 (10)C17—C18—C16123.8 (5)
O1—Nd2—O1267.92 (11)C20—C19—C18123.0 (6)
O8i—Nd2—O1277.80 (9)C20—C19—H19A118.5
O13—Nd2—O12131.68 (12)C18—C19—H19A118.5
O7—Nd2—O12118.72 (6)C19—C20—C19i117.1 (8)
O2—Nd2—O12115.50 (10)C19—C20—C21121.5 (4)
O8—Nd2—Nd2i40.82 (7)C19i—C20—C21121.5 (4)
O6—Nd2—Nd2i107.94 (8)C20—C21—H21A109.5
O9—Nd2—Nd2i80.16 (7)C20—C21—H21B109.5
O1—Nd2—Nd2i173.85 (8)H21A—C21—H21B109.5
O8i—Nd2—Nd2i39.61 (7)C20—C21—H21C109.5
O13—Nd2—Nd2i103.11 (10)H21A—C21—H21C109.5
O7—Nd2—Nd2i43.69 (7)H21B—C21—H21C109.5
O2—Nd2—Nd2i105.60 (7)O14—Cl1—O17111.1 (4)
O12—Nd2—Nd2i117.26 (6)O14—Cl1—O16112.0 (5)
O8—Nd2—Nd141.25 (8)O17—Cl1—O16110.9 (3)
O6—Nd2—Nd1175.23 (8)O14—Cl1—O15110.5 (7)
O9—Nd2—Nd140.11 (7)O17—Cl1—O15106.6 (4)
O1—Nd2—Nd1106.83 (9)O16—Cl1—O15105.2 (4)
O8i—Nd2—Nd180.85 (8)O21—Cl2—O19112.7 (7)
O13—Nd2—Nd1103.75 (10)O21—Cl2—O18107.7 (7)
O7—Nd2—Nd1106.25 (6)O19—Cl2—O18113.7 (9)
O2—Nd2—Nd143.41 (7)O21—Cl2—O20109.6 (8)
O12—Nd2—Nd1114.73 (7)O19—Cl2—O20102.1 (8)
Nd2i—Nd2—Nd168.352 (6)O18—Cl2—O20111.0 (7)
C7—O1—Nd2135.8 (3)Cl2—O18—Cl2A117.7 (6)
C1—O2—Nd1134.4 (3)O20A—Cl2A—O21A105.5 (18)
C1—O2—Nd2133.6 (3)O20A—Cl2A—O18111.2 (12)
Nd1—O2—Nd292.08 (10)O21A—Cl2A—O18112.8 (14)
C9—O3—Nd1135.6 (4)O20A—Cl2A—O19A92.1 (12)
C10—O4—Nd1122.6 (10)O21A—Cl2A—O19A110.4 (14)
C10A—O4A—Nd1i139.4 (11)O18—Cl2A—O19A121.9 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O19i1.001.982.969 (10)168
O9—H9···O15i1.001.932.922 (7)170
O10—H10C···O3ii0.842.052.884 (5)170
O10—H10D···O12i0.841.982.764 (5)155
O11—H11A···O14i0.842.493.331 (14)180
O12—H12A···O19A0.842.102.945 (8)180
O12—H12B···O16i0.841.982.819 (6)180
O13—H13C···O20i0.842.012.845 (12)180
O13—H13D···O19Aiii0.842.102.943 (8)180
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Nd4(C9H7O3)4(OH)4(H2O)8](ClO4)4·2C2H6O
Mr1931.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)20.9933 (3), 24.7385 (5), 17.6893 (3)
β (°) 120.469 (1)
V3)7918.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.430, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
31251, 8998, 7708
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.06
No. of reflections8998
No. of parameters400
No. of restraints55
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0625P)2 + 41.2001P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.64, 1.16

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL/PC (Sheldrick, 2001), SHELXTL/PC.

Selected bond lengths (Å) top
Nd1—O92.416 (3)Nd2—O82.392 (3)
Nd1—O4Ai2.429 (12)Nd2—O62.441 (4)
Nd1—O42.456 (12)Nd2—O92.447 (3)
Nd1—O9i2.467 (3)Nd2—O12.452 (3)
Nd1—O82.472 (3)Nd2—O8i2.453 (3)
Nd1—O102.478 (4)Nd2—O132.516 (4)
Nd1—O32.484 (4)Nd2—O72.559 (3)
Nd1—O112.512 (3)Nd2—O22.597 (3)
Nd1—O22.546 (3)Nd2—O122.627 (3)
Nd1—O52.565 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O19i1.001.982.969 (10)168
O9—H9···O15i1.001.932.922 (7)170
O10—H10C···O3ii0.842.052.884 (5)170
O10—H10D···O12i0.841.982.764 (5)155
O11—H11A···O14i0.842.493.331 (14)180
O12—H12A···O19A0.842.102.945 (8)180
O12—H12B···O16i0.841.982.819 (6)180
O13—H13C···O20i0.842.012.845 (12)180
O13—H13D···O19Aiii0.842.102.943 (8)180
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds