Download citation
Download citation
link to html
In the title phospho­nate derivative, C9H12NO6P, inter­molecular O—H...O hydrogen bonds link the mol­ecules in zigzag chains along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042340/sj6184sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042340/sj6184Isup2.hkl
Contains datablock I

CCDC reference: 296669

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.040
  • wR factor = 0.152
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.706 PLAT230_ALERT_2_C Hirshfeld Test Diff for O5 - N1 .. 5.85 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Phosphonate esters are important intermediates in the preparation of flame-retardant materials (Acher & Wakselman, 1982). As part of our work in this area, the title compound, (I), was prepared by the reaction of 1-bromomethyl-2-hydroxy-4-nitrobenzene and trimethyl phosphite (Grawe et al., 2002) and its structure is reported here (Fig. 1 and Table 1).

The benzene ring and its nitro substituent are essentially coplanar [interplanar angle = 3.4 (2)°], while the O1—P1—O2—C8 and C1—P1—O3—C9 torsion angles are 164.7 (2) and −159.2 (2)°, respectively, indicating that the atoms in these residues are also coplanar. In the crystal structure, O4—H4···O1 hydrogen bonds link the molecules into zigzag chains along the b axis (Fig. 2).

Experimental top

The title compound was prepared by the method of Grawe et al. (2002). Single crystals suitable for crystallographic analysis were obtained by slow evaporation of a tetrahydrofuran solution [m.p. 441 (2) K]. IR (KBr, ν, cm−1): 1502 (CN), 1195 (PO). 1H NMR (DMSO): δ 7.64—7.61 (m, 2H), 7.41–7.39 (m, 1H), 3.61 (s, 3H), 3.58 (s, 3H), 3.31 (s, 1H), 3.27 (s, 1H).

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso = 1.2Ueq(C) for CH2 H atoms, C—H = 0.96 Å and Uiso = 1.5Ueq(C) for CH3 H atoms, and O—H = 0.82 Å and Uiso = 1.5Ueq(C) for OH H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of (I), with hydrogen bonds drawn as dashed lines.
Dimethyl (2-hydroxy-4-nitrobenzyl)phosphonate top
Crystal data top
C9H12NO6PF(000) = 544
Mr = 261.17Dx = 1.488 Mg m3
Monoclinic, P21/nMelting point: 441(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8154 (15) ÅCell parameters from 2199 reflections
b = 12.963 (3) Åθ = 2.4–26.0°
c = 11.669 (2) ŵ = 0.25 mm1
β = 99.660 (3)°T = 294 K
V = 1165.4 (4) Å3Block, yellow
Z = 40.30 × 0.24 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.915, Tmax = 0.972k = 1615
6476 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.71 w = 1/[σ2(Fo2) + (0.1314P)2 + 1.0878P]
where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H12NO6PV = 1165.4 (4) Å3
Mr = 261.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8154 (15) ŵ = 0.25 mm1
b = 12.963 (3) ÅT = 294 K
c = 11.669 (2) Å0.30 × 0.24 × 0.12 mm
β = 99.660 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1671 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.972Rint = 0.036
6476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.71Δρmax = 0.19 e Å3
2408 reflectionsΔρmin = 0.38 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.08647 (8)0.30331 (5)0.10575 (5)0.0373 (2)
O10.0878 (3)0.19508 (13)0.14275 (16)0.0491 (5)
O20.2783 (2)0.34014 (15)0.11173 (16)0.0521 (5)
O30.0138 (3)0.32433 (14)0.01981 (16)0.0542 (5)
O40.1995 (3)0.54684 (14)0.27178 (16)0.0551 (5)
H40.26600.59170.30230.083*
O50.3644 (3)0.50764 (18)0.69912 (17)0.0663 (6)
O60.2441 (3)0.3662 (2)0.74030 (18)0.0750 (7)
N10.2764 (3)0.4313 (2)0.67091 (19)0.0500 (6)
C10.0239 (4)0.3876 (2)0.1893 (2)0.0461 (6)
H1A0.02840.45590.15490.055*
H1B0.14240.36360.18490.055*
C20.0590 (3)0.39558 (18)0.3161 (2)0.0385 (6)
C30.0249 (3)0.3239 (2)0.3975 (2)0.0470 (6)
H30.04760.26840.37320.056*
C40.0963 (4)0.3330 (2)0.5145 (2)0.0476 (6)
H4A0.07290.28460.56860.057*
C50.2028 (3)0.4161 (2)0.5471 (2)0.0396 (6)
C60.2428 (3)0.48830 (18)0.4697 (2)0.0382 (5)
H60.31680.54290.49490.046*
C70.1703 (3)0.47825 (17)0.3528 (2)0.0377 (5)
C80.3249 (5)0.4333 (3)0.0558 (3)0.0708 (10)
H8A0.32730.41950.02480.106*
H8B0.43740.45610.09300.106*
H8C0.24080.48610.06200.106*
C90.0114 (4)0.2514 (2)0.1127 (2)0.0515 (7)
H9A0.10660.23540.11890.077*
H9B0.06870.28080.18450.077*
H9C0.07060.18950.09660.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0421 (4)0.0322 (4)0.0352 (4)0.0033 (3)0.0001 (3)0.0009 (2)
O10.0642 (13)0.0326 (10)0.0500 (11)0.0039 (8)0.0078 (9)0.0009 (8)
O20.0445 (11)0.0596 (12)0.0517 (11)0.0017 (9)0.0069 (9)0.0090 (9)
O30.0706 (13)0.0463 (11)0.0381 (10)0.0097 (9)0.0128 (9)0.0051 (8)
O40.0796 (15)0.0397 (10)0.0405 (10)0.0087 (9)0.0055 (9)0.0034 (8)
O50.0774 (15)0.0716 (14)0.0436 (11)0.0038 (12)0.0078 (10)0.0119 (10)
O60.0745 (15)0.1102 (19)0.0423 (11)0.0030 (14)0.0157 (10)0.0188 (12)
N10.0474 (13)0.0667 (15)0.0368 (12)0.0145 (12)0.0099 (10)0.0016 (11)
C10.0431 (14)0.0439 (14)0.0467 (15)0.0072 (11)0.0057 (11)0.0094 (11)
C20.0355 (12)0.0376 (13)0.0412 (13)0.0072 (10)0.0032 (10)0.0089 (10)
C30.0420 (14)0.0447 (14)0.0546 (16)0.0063 (11)0.0094 (12)0.0100 (12)
C40.0497 (16)0.0451 (14)0.0512 (16)0.0018 (12)0.0175 (13)0.0039 (12)
C50.0366 (13)0.0457 (14)0.0370 (13)0.0070 (10)0.0077 (10)0.0049 (10)
C60.0405 (13)0.0328 (12)0.0402 (13)0.0026 (10)0.0030 (10)0.0055 (10)
C70.0435 (13)0.0313 (12)0.0370 (12)0.0069 (10)0.0027 (10)0.0025 (10)
C80.084 (2)0.074 (2)0.0568 (19)0.0265 (19)0.0164 (17)0.0059 (16)
C90.0664 (19)0.0530 (17)0.0350 (13)0.0104 (14)0.0082 (12)0.0048 (11)
Geometric parameters (Å, º) top
P1—O11.4673 (19)C2—C71.401 (3)
P1—O21.563 (2)C3—C41.390 (4)
P1—O31.5653 (18)C3—H30.9300
P1—C11.781 (3)C4—C51.376 (4)
O2—C81.449 (4)C4—H4A0.9300
O3—C91.441 (3)C5—C61.372 (4)
O4—C71.345 (3)C6—C71.392 (3)
O4—H40.8200C6—H60.9300
O5—N11.219 (3)C8—H8A0.9600
O6—N11.225 (3)C8—H8B0.9600
N1—C51.476 (3)C8—H8C0.9600
C1—C21.516 (3)C9—H9A0.9600
C1—H1A0.9700C9—H9B0.9600
C1—H1B0.9700C9—H9C0.9600
C2—C31.386 (4)
O1—P1—O2108.62 (11)C5—C4—C3117.5 (2)
O1—P1—O3114.82 (11)C5—C4—H4A121.2
O2—P1—O3108.33 (11)C3—C4—H4A121.2
O1—P1—C1113.95 (13)C6—C5—C4123.1 (2)
O2—P1—C1109.70 (12)C6—C5—N1117.3 (2)
O3—P1—C1101.12 (12)C4—C5—N1119.6 (2)
C8—O2—P1123.1 (2)C5—C6—C7118.7 (2)
C9—O3—P1121.49 (18)C5—C6—H6120.6
C7—O4—H4109.5C7—C6—H6120.6
O5—N1—O6123.4 (2)O4—C7—C6122.5 (2)
O5—N1—C5118.8 (2)O4—C7—C2117.4 (2)
O6—N1—C5117.8 (3)C6—C7—C2120.1 (2)
C2—C1—P1114.14 (17)O2—C8—H8A109.5
C2—C1—H1A108.7O2—C8—H8B109.5
P1—C1—H1A108.7H8A—C8—H8B109.5
C2—C1—H1B108.7O2—C8—H8C109.5
P1—C1—H1B108.7H8A—C8—H8C109.5
H1A—C1—H1B107.6H8B—C8—H8C109.5
C3—C2—C7118.9 (2)O3—C9—H9A109.5
C3—C2—C1121.6 (2)O3—C9—H9B109.5
C7—C2—C1119.5 (2)H9A—C9—H9B109.5
C2—C3—C4121.7 (2)O3—C9—H9C109.5
C2—C3—H3119.2H9A—C9—H9C109.5
C4—C3—H3119.2H9B—C9—H9C109.5
O1—P1—O2—C8164.7 (2)C3—C4—C5—C61.0 (4)
O3—P1—O2—C839.4 (2)C3—C4—C5—N1177.7 (2)
C1—P1—O2—C870.2 (3)O5—N1—C5—C62.0 (3)
O1—P1—O3—C936.1 (3)O6—N1—C5—C6178.7 (2)
O2—P1—O3—C985.5 (2)O5—N1—C5—C4176.8 (2)
C1—P1—O3—C9159.2 (2)O6—N1—C5—C42.5 (4)
O1—P1—C1—C263.8 (2)C4—C5—C6—C71.1 (4)
O2—P1—C1—C258.3 (2)N1—C5—C6—C7177.7 (2)
O3—P1—C1—C2172.52 (19)C5—C6—C7—O4178.4 (2)
P1—C1—C2—C383.8 (3)C5—C6—C7—C20.0 (3)
P1—C1—C2—C797.4 (2)C3—C2—C7—O4179.5 (2)
C7—C2—C3—C40.9 (4)C1—C2—C7—O40.7 (3)
C1—C2—C3—C4177.8 (2)C3—C2—C7—C60.9 (4)
C2—C3—C4—C50.0 (4)C1—C2—C7—C6177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.812.625 (3)175
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12NO6P
Mr261.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.8154 (15), 12.963 (3), 11.669 (2)
β (°) 99.660 (3)
V3)1165.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.915, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6476, 2408, 1671
Rint0.036
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.152, 0.71
No. of reflections2408
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected bond and torsion angles (º) top
C8—O2—P1123.1 (2)C9—O3—P1121.49 (18)
O1—P1—O2—C8164.7 (2)C1—P1—O3—C9159.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.812.625 (3)175
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds