Download citation
Download citation
link to html
The title compound, [Cu(C11H14ClN2O)(NCS)], is a mononuclear Schiff base copper(II) complex. The CuII atom is coordinated by one O and two N atoms of the Schiff base ligand, and by one N atom of the thio­cyanate ligand, forming a square-planar coordination. The mol­ecule possesses crystallographic mirror symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040250/su6254sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040250/su6254Isup2.hkl
Contains datablock I

CCDC reference: 296678

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.035
  • wR factor = 0.100
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT412_ALERT_2_B Short Intra XH3 .. XHn H9A .. H10A .. 1.74 Ang.
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.66 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.11 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.51 PLAT301_ALERT_3_C Main Residue Disorder ......................... 5.00 Perc.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Recently, the author has reported on a series of Schiff base complexes (You, 2005a,d,e). As an extension of the work on the structural characterization of Schiff base complexes, the synthesis and structure of a new copper(II) compound, (I), is reported here.

The molecular structure of complex (I), a mononuclear copper(II) compound, is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Compound (I) is structurally similar to the copper(II) compounds reported recently (You, 2005b,c). The Cu atom is four-coordinated, in a square-planar arrangement, by one O and two N atoms of the Schiff base ligand, and by one N atom of the thiocyanate anion.

The molecule possesses crystallographic mirror symmetry, with atoms Cu1, Cl1, S1, O1, C1–C8, C11, H3, H4, H6 and H7 lying in the crystallographic mirror plane. The values of the trans angles in the CuON3 square plane are, respectively, 175.41 (12) and 177.79 (11)°, indicating a slightly distorted square-planar coordination. The Cu–O and Cu–N bond lengths (Table 1) are comparable to the corresponding values observed in other Schiff base copper(II) complexes (MacLachlan et al., 1996; Colacio et al., 2000) and, as expected, the bond involving amine atom N2 [2.071 (3) Å] is longer than that involving imine atom N1 [1.925 (3) Å] (Mondal et al., 2001).

In the crystal structure, the molecules stack back-to-back along the b axis and the crystal packing is shown in Fig. 2.

Experimental top

5-Chlorosalicylaldehy (0.1 mmol, 15.6 mg) and N,N'-dimethylethane-1,2-diamine (0.1 mmol, 8.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 20 min to give a yellow solution. To the above solution was added an aqueous solution (2 ml) of NH4NCS (0.1 mmol, 6.5 mg) and an MeOH solution (3 ml) of Cu(CH3COO)2·H2O (0.1 mmol, 19.9 mg), with stirring. The mixture was stirred for another 20 min at room temperature. The filtrate was kept in air for 9 d, during which time blue block-shaped crystals were formed.

Refinement top

All non-H atoms except C9 and C10 lie in a crystallographic mirror plane. Atom C9 is disordered across the mirror plane and as a result the occupancy factor for the disordered components were fixed at 0.50 each. The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The atom labelled with the suffix A is at the symmetry position (x, 1/2 − y, z). Only one component of the disordered C9 group is shown.
[Figure 2] Fig. 2. The crystal packing of compound (I), viewed along the b axis.
{4-Chloro-2-[(2-dimethylaminoethylimino)methyl]phenolato}thiocyanatocopper(II) top
Crystal data top
[Cu(C11H14ClN2O)(NCS)]F(000) = 708
Mr = 347.31Dx = 1.570 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4650 reflections
a = 19.172 (2) Åθ = 2.8–27.2°
b = 6.764 (1) ŵ = 1.80 mm1
c = 11.334 (1) ÅT = 298 K
V = 1469.8 (3) Å3Block, blue
Z = 40.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1827 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.692, Tmax = 0.714k = 88
12043 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.053P)2 + 0.9005P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1827 reflectionsΔρmax = 0.77 e Å3
117 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (8)
Crystal data top
[Cu(C11H14ClN2O)(NCS)]V = 1469.8 (3) Å3
Mr = 347.31Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.172 (2) ŵ = 1.80 mm1
b = 6.764 (1) ÅT = 298 K
c = 11.334 (1) Å0.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1558 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.714Rint = 0.026
12043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.77 e Å3
1827 reflectionsΔρmin = 0.60 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.316105 (18)0.25000.13768 (3)0.04083 (16)
Cl10.65292 (5)0.25000.15121 (9)0.0592 (3)
S10.08076 (5)0.25000.04135 (13)0.1106 (7)
O10.35797 (11)0.25000.01487 (19)0.0456 (5)
N10.40484 (14)0.25000.2172 (2)0.0462 (7)
N20.27443 (15)0.25000.3063 (3)0.0615 (9)
N30.22355 (15)0.25000.0701 (3)0.0680 (10)
C10.47828 (15)0.25000.0449 (3)0.0351 (6)
C20.42428 (15)0.25000.0404 (3)0.0363 (6)
C30.44440 (18)0.25000.1602 (3)0.0472 (8)
H30.41000.25000.21800.057*
C40.51288 (18)0.25000.1941 (3)0.0482 (8)
H40.52450.25000.27380.058*
C50.56501 (16)0.25000.1085 (3)0.0426 (7)
C60.54859 (15)0.25000.0085 (3)0.0379 (6)
H60.58400.25000.06460.045*
C70.46528 (16)0.25000.1685 (3)0.0429 (7)
H70.50390.25000.21820.052*
C80.3988 (2)0.25000.3458 (3)0.0844 (18)
H8A0.40200.38320.37450.101*0.50
H8B0.43670.17580.37880.101*0.50
C90.3345 (3)0.1673 (11)0.3827 (4)0.0646 (17)0.50
H9A0.33640.02610.37480.077*0.50
H9B0.32630.19820.46420.077*0.50
C100.2307 (2)0.0760 (5)0.3279 (3)0.0935 (13)
H10A0.25700.04170.31190.140*
H10B0.19060.08030.27720.140*
H10C0.21580.07540.40880.140*
C110.16454 (18)0.25000.0584 (3)0.0614 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0279 (2)0.0560 (3)0.0386 (2)0.0000.00528 (14)0.000
Cl10.0374 (4)0.0766 (6)0.0636 (6)0.0000.0194 (4)0.000
S10.0299 (5)0.229 (2)0.0725 (8)0.0000.0026 (5)0.000
O10.0290 (10)0.0694 (15)0.0384 (11)0.0000.0023 (9)0.000
N10.0354 (13)0.0697 (19)0.0335 (13)0.0000.0039 (11)0.000
N20.0365 (14)0.102 (3)0.0457 (16)0.0000.0131 (13)0.000
N30.0339 (15)0.117 (3)0.0533 (19)0.0000.0028 (13)0.000
C10.0320 (13)0.0366 (14)0.0366 (14)0.0000.0035 (11)0.000
C20.0324 (14)0.0404 (15)0.0360 (15)0.0000.0035 (11)0.000
C30.0398 (16)0.066 (2)0.0363 (16)0.0000.0020 (13)0.000
C40.0489 (18)0.060 (2)0.0360 (16)0.0000.0119 (14)0.000
C50.0346 (15)0.0452 (17)0.0480 (17)0.0000.0121 (13)0.000
C60.0316 (14)0.0397 (16)0.0424 (16)0.0000.0020 (12)0.000
C70.0313 (14)0.059 (2)0.0385 (15)0.0000.0009 (12)0.000
C80.049 (2)0.169 (6)0.0348 (19)0.0000.0051 (16)0.000
C90.048 (2)0.109 (5)0.036 (2)0.001 (3)0.008 (2)0.010 (2)
C100.122 (3)0.068 (2)0.090 (2)0.016 (2)0.061 (2)0.0184 (19)
C110.0345 (17)0.110 (3)0.0395 (18)0.0000.0062 (14)0.000
Geometric parameters (Å, º) top
Cu1—O11.906 (2)C3—C41.368 (5)
Cu1—N11.925 (3)C3—H30.9300
Cu1—N31.932 (3)C4—C51.393 (5)
Cu1—N22.071 (3)C4—H40.9300
Cl1—C51.754 (3)C5—C61.363 (5)
S1—C111.618 (4)C6—H60.9300
O1—C21.304 (4)C7—H70.9300
N1—C71.284 (4)C8—C91.416 (6)
N1—C81.462 (4)C8—C9i1.416 (6)
N2—C101.466 (4)C8—H8A0.9601
N2—C10i1.466 (4)C8—H8B0.9599
N2—C9i1.546 (6)C9—C9i1.118 (14)
N2—C91.546 (6)C9—H9A0.9600
N3—C111.139 (5)C9—H9B0.9600
C1—C61.410 (4)C10—H10A0.9600
C1—C21.417 (4)C10—H10B0.9600
C1—C71.423 (4)C10—H10C0.9600
C2—C31.411 (4)
O1—Cu1—N193.02 (10)C4—C5—Cl1119.8 (3)
O1—Cu1—N391.56 (12)C5—C6—C1120.4 (3)
N1—Cu1—N3175.41 (12)C5—C6—H6119.8
O1—Cu1—N2177.79 (11)C1—C6—H6119.8
N1—Cu1—N284.76 (12)N1—C7—C1125.6 (3)
N3—Cu1—N290.65 (13)N1—C7—H7117.2
C2—O1—Cu1127.7 (2)C1—C7—H7117.2
C7—N1—C8120.1 (3)C9—C8—C9i46.5 (6)
C7—N1—Cu1126.6 (2)C9—C8—N1111.3 (3)
C8—N1—Cu1113.4 (2)C9i—C8—N1111.3 (3)
C10—N2—C10i106.8 (3)C9—C8—H8A109.0
C10—N2—C9i128.5 (4)C9i—C8—H8A65.5
C10i—N2—C9i92.4 (3)N1—C8—H8A109.4
C10—N2—C992.4 (3)C9—C8—H8B109.7
C10i—N2—C9128.5 (4)C9i—C8—H8B138.6
C10—N2—Cu1112.0 (2)N1—C8—H8B109.2
C10i—N2—Cu1112.0 (2)H8A—C8—H8B108.0
C9i—N2—Cu1103.3 (2)C9i—C9—C866.8 (3)
C9—N2—Cu1103.3 (2)C9i—C9—N268.8 (3)
C11—N3—Cu1163.3 (3)C8—C9—N2109.9 (4)
C6—C1—C2119.9 (3)C9i—C9—H9A174.2
C6—C1—C7117.1 (3)C8—C9—H9A109.4
C2—C1—C7123.0 (3)N2—C9—H9A109.6
O1—C2—C3118.7 (3)C9i—C9—H9B77.4
O1—C2—C1124.1 (3)C8—C9—H9B110.0
C3—C2—C1117.2 (3)N2—C9—H9B109.7
C4—C3—C2122.2 (3)H9A—C9—H9B108.2
C4—C3—H3118.9N2—C10—H10A109.5
C2—C3—H3118.9N2—C10—H10B109.5
C3—C4—C5119.5 (3)H10A—C10—H10B109.5
C3—C4—H4120.2N2—C10—H10C109.5
C5—C4—H4120.2H10A—C10—H10C109.5
C6—C5—C4120.8 (3)H10B—C10—H10C109.5
C6—C5—Cl1119.4 (3)N3—C11—S1179.8 (4)
N1—Cu1—O1—C20.0C3—C4—C5—C60.0
N3—Cu1—O1—C2180.0C3—C4—C5—Cl1180.0
O1—Cu1—N1—C70.0C4—C5—C6—C10.0
N2—Cu1—N1—C7180.0Cl1—C5—C6—C1180.0
O1—Cu1—N1—C8180.0C2—C1—C6—C50.0
N2—Cu1—N1—C80.0C7—C1—C6—C5180.0
N1—Cu1—N2—C10120.0 (2)C8—N1—C7—C1180.0
N3—Cu1—N2—C1060.0 (2)Cu1—N1—C7—C10.0
N1—Cu1—N2—C10i120.0 (2)C6—C1—C7—N1180.0
N3—Cu1—N2—C10i60.0 (2)C2—C1—C7—N10.0
N1—Cu1—N2—C9i21.8 (3)C7—N1—C8—C9154.9 (3)
N3—Cu1—N2—C9i158.2 (3)Cu1—N1—C8—C925.1 (3)
N1—Cu1—N2—C921.8 (3)C7—N1—C8—C9i154.9 (3)
N3—Cu1—N2—C9158.2 (3)Cu1—N1—C8—C9i25.1 (3)
O1—Cu1—N3—C11180.0N1—C8—C9—C9i99.7 (2)
N2—Cu1—N3—C110.0C9i—C8—C9—N255.0 (4)
Cu1—O1—C2—C3180.0N1—C8—C9—N244.7 (5)
Cu1—O1—C2—C10.0C10—N2—C9—C9i151.5 (2)
C6—C1—C2—O1180.0C10i—N2—C9—C9i37.6 (3)
C7—C1—C2—O10.0Cu1—N2—C9—C9i95.25 (11)
C6—C1—C2—C30.0C10—N2—C9—C8154.7 (4)
C7—C1—C2—C3180.0C10i—N2—C9—C891.4 (4)
O1—C2—C3—C4180.0C9i—N2—C9—C853.8 (4)
C1—C2—C3—C40.0Cu1—N2—C9—C841.4 (4)
C2—C3—C4—C50.0
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C11H14ClN2O)(NCS)]
Mr347.31
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)19.172 (2), 6.764 (1), 11.334 (1)
V3)1469.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.692, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
12043, 1827, 1558
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.05
No. of reflections1827
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.60

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.906 (2)Cu1—N31.932 (3)
Cu1—N11.925 (3)Cu1—N22.071 (3)
O1—Cu1—N193.02 (10)O1—Cu1—N2177.79 (11)
O1—Cu1—N391.56 (12)N1—Cu1—N284.76 (12)
N1—Cu1—N3175.41 (12)N3—Cu1—N290.65 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds