Download citation
Download citation
link to html
The crystal structure of the title compound, C19H19N3O2, shows the mol­ecule to be essentially planar with the exception of the terminal phenyl group. Mol­ecules are associated via inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041863/tk6294sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041863/tk6294Isup2.hkl
Contains datablock I

CCDC reference: 296685

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.042
  • wR factor = 0.120
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Metal complexes of Schiff bases have attracted much attention because they can be utilized as model compounds for the active centres in various enzymes and proteins (Kahwa et al., 1986; Santos et al., 2001). Important to the understanding of the coordination potential of these ligands is a knowledge of the ligand structure. Accordingly, the synthesis and crystal structures of Schiff base ligands derived from 4-aminoantipyrine, such as thenoyltrifluoroacetone (Yu et al., 2002), 4-hydroxy-3-methoxybenzaldehyde (Diao et al., 2005) and 2,4-dichlorobenzaldehyde (Jing et al., 2005), have been reported.

In the molecular structure of the related title compound, (I) (Fig. 1), the expected geometric parameters are observed (Table 1). The central chromophore containing the C9–C11/N1–N3/O2 atoms is planar, with an r.m.s. deviation for fitted atoms of 0.038 (2) Å; the 4-methoxybenzaldehyde moiety (C1–C8/O1) is also planar, with an r.m.s. deviation of 0.027 (5) Å. The dihedral angles formed between these planes and that through the C14–C19 phenyl ring are 48.24 (5) and 9.40 (6)°, respectively. Intramolecular C—H···O hydrogen bonding stabilizes the molecular conformation, while intermolecular C—H···O hydrogen bonding stabilizes the crystal structure; geometric details are given in Table 2. The molecules associate in a zigzag pattern along the c axis, forming a supramolecular structure, as illustrated in Fig. 2.

Experimental top

An anhydrous ethanol solution of 4-methoxy-benzaldehyde (1.36 g, 10 mmol) was added to an anhydrous ethanol solution of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (2.03 g, 10 mmol) and the mixture was stirred at 350 K for 8 h under N2, whereupon a yellow solution appeared. The solvent was removed and the residue recrystallized from N,N-dimethylformamide. The product was isolated and then dried in vacuo to give pure (I) in 79% yield. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an N,N-dimethylformamide solution of (I).

Refinement top

The H atoms were included in calculated positions and refined using a riding model, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and N—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C,N) for aromatic and N-bound H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen-bonding interactions (dashed lines) in (I).
4-[(4-Methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C19H19N3O2F(000) = 680
Mr = 321.37Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2518 reflections
a = 7.1407 (10) Åθ = 2.3–23.6°
b = 24.864 (3) ŵ = 0.09 mm1
c = 9.4733 (13) ÅT = 294 K
β = 96.700 (2)°Block, yellow
V = 1670.4 (4) Å30.20 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Radiation source: fine-focus sealed tube2677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.980, Tmax = 0.988k = 3132
11145 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.1906P]
where P = (Fo2 + 2Fc2)/3
3949 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H19N3O2V = 1670.4 (4) Å3
Mr = 321.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1407 (10) ŵ = 0.09 mm1
b = 24.864 (3) ÅT = 294 K
c = 9.4733 (13) Å0.20 × 0.16 × 0.14 mm
β = 96.700 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2677 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.022
11145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3949 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22790 (17)0.70587 (4)1.19517 (13)0.0624 (3)
O20.19837 (14)0.41882 (4)0.71804 (11)0.0522 (3)
N10.46932 (16)0.51705 (5)0.79389 (12)0.0413 (3)
N20.60395 (15)0.41890 (5)0.55082 (12)0.0405 (3)
N30.43987 (15)0.39400 (5)0.58744 (12)0.0407 (3)
C10.3709 (3)0.74566 (7)1.2206 (2)0.0750 (6)
H1A0.47990.73021.27450.113*
H1B0.32500.77491.27290.113*
H1C0.40430.75871.13150.113*
C20.4532 (2)0.60747 (6)0.98053 (15)0.0452 (4)
H20.56850.60080.94730.054*
C30.4333 (2)0.65276 (6)1.06163 (16)0.0470 (4)
H30.53360.67651.08160.056*
C40.2629 (2)0.66257 (6)1.11298 (16)0.0462 (4)
C50.1153 (2)0.62678 (7)1.08438 (18)0.0548 (4)
H50.00140.63291.12030.066*
C60.1372 (2)0.58201 (7)1.00253 (18)0.0533 (4)
H60.03710.55820.98370.064*
C70.3060 (2)0.57159 (6)0.94728 (15)0.0422 (3)
C80.3254 (2)0.52403 (6)0.85985 (15)0.0446 (3)
H80.23060.49820.85210.054*
C90.48477 (19)0.47171 (6)0.70981 (14)0.0379 (3)
C100.63373 (19)0.46336 (6)0.63383 (14)0.0382 (3)
C110.35503 (19)0.42789 (6)0.68046 (14)0.0388 (3)
C120.8094 (2)0.49533 (6)0.63592 (18)0.0508 (4)
H12A0.91580.47320.66890.076*
H12B0.80410.52550.69850.076*
H12C0.82200.50790.54170.076*
C130.7551 (2)0.38417 (6)0.51215 (18)0.0537 (4)
H13A0.85980.40590.49170.081*
H13B0.71000.36340.42970.081*
H13C0.79490.36040.58970.081*
C140.33546 (19)0.35873 (5)0.49036 (14)0.0382 (3)
C150.2232 (2)0.32000 (6)0.54370 (16)0.0473 (4)
H150.22000.31690.64120.057*
C160.1164 (2)0.28610 (6)0.45170 (18)0.0538 (4)
H160.03990.26030.48730.065*
C170.1220 (2)0.29009 (7)0.30723 (18)0.0565 (4)
H170.05090.26690.24550.068*
C180.2334 (2)0.32864 (7)0.25501 (17)0.0561 (4)
H180.23680.33140.15740.067*
C190.3404 (2)0.36338 (6)0.34535 (15)0.0465 (4)
H190.41480.38950.30910.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0631 (7)0.0472 (7)0.0782 (8)0.0067 (5)0.0140 (6)0.0143 (6)
O20.0382 (6)0.0619 (7)0.0592 (7)0.0067 (5)0.0170 (5)0.0081 (5)
N10.0409 (7)0.0434 (7)0.0395 (6)0.0026 (5)0.0051 (5)0.0002 (5)
N20.0319 (6)0.0450 (7)0.0458 (7)0.0004 (5)0.0097 (5)0.0020 (5)
N30.0336 (6)0.0469 (7)0.0425 (6)0.0042 (5)0.0086 (5)0.0035 (5)
C10.0735 (13)0.0529 (11)0.0961 (15)0.0042 (9)0.0010 (11)0.0191 (10)
C20.0419 (8)0.0520 (9)0.0432 (8)0.0015 (7)0.0119 (6)0.0015 (7)
C30.0465 (9)0.0465 (9)0.0483 (9)0.0032 (7)0.0066 (7)0.0008 (7)
C40.0505 (9)0.0409 (8)0.0474 (8)0.0085 (7)0.0065 (7)0.0015 (6)
C50.0441 (9)0.0565 (10)0.0666 (10)0.0058 (7)0.0182 (8)0.0069 (8)
C60.0425 (9)0.0542 (10)0.0651 (10)0.0042 (7)0.0141 (7)0.0072 (8)
C70.0434 (8)0.0443 (8)0.0397 (8)0.0027 (6)0.0075 (6)0.0012 (6)
C80.0421 (8)0.0481 (9)0.0442 (8)0.0015 (6)0.0070 (6)0.0016 (6)
C90.0353 (7)0.0421 (8)0.0363 (7)0.0017 (6)0.0041 (6)0.0023 (6)
C100.0336 (7)0.0407 (8)0.0401 (7)0.0026 (6)0.0030 (6)0.0045 (6)
C110.0340 (7)0.0462 (8)0.0363 (7)0.0023 (6)0.0041 (6)0.0016 (6)
C120.0381 (8)0.0513 (9)0.0641 (10)0.0032 (7)0.0105 (7)0.0001 (8)
C130.0425 (9)0.0565 (10)0.0645 (10)0.0050 (7)0.0163 (8)0.0078 (8)
C140.0342 (7)0.0384 (7)0.0420 (8)0.0020 (6)0.0042 (6)0.0006 (6)
C150.0485 (9)0.0499 (9)0.0440 (8)0.0040 (7)0.0075 (7)0.0033 (7)
C160.0511 (9)0.0516 (9)0.0600 (10)0.0129 (7)0.0111 (8)0.0002 (8)
C170.0555 (10)0.0583 (10)0.0559 (10)0.0137 (8)0.0073 (8)0.0129 (8)
C180.0632 (11)0.0627 (11)0.0429 (9)0.0105 (8)0.0086 (8)0.0057 (7)
C190.0500 (9)0.0456 (9)0.0447 (8)0.0059 (7)0.0091 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1—C11.422 (2)C7—C81.460 (2)
O1—C41.3684 (18)C8—H80.9300
O2—C111.2336 (16)C9—C101.3679 (18)
N1—C81.2754 (18)C9—C111.436 (2)
N1—C91.3920 (17)C10—C121.483 (2)
N2—N31.4040 (15)C12—H12A0.9600
N2—C101.3589 (18)C12—H12B0.9600
N2—C131.4620 (17)C12—H12C0.9600
N3—C111.4065 (17)C13—H13A0.9600
N3—C141.4181 (17)C13—H13B0.9600
C1—H1A0.9600C13—H13C0.9600
C1—H1B0.9600C14—C191.383 (2)
C1—H1C0.9600C14—C151.3854 (19)
C2—C31.380 (2)C15—C161.377 (2)
C2—C71.387 (2)C15—H150.9300
C2—H20.9300C16—C171.377 (2)
C3—C41.384 (2)C16—H160.9300
C3—H30.9300C17—C181.374 (2)
C4—C51.382 (2)C17—H170.9300
C5—C61.376 (2)C18—C191.382 (2)
C5—H50.9300C18—H180.9300
C6—C71.393 (2)C19—H190.9300
C6—H60.9300
C1—O1—C4117.94 (13)N1—C9—C11129.25 (12)
C8—N1—C9120.85 (13)N2—C10—C9110.44 (12)
N3—N2—C10107.12 (10)N2—C10—C12121.24 (12)
N3—N2—C13117.60 (11)C9—C10—C12128.32 (13)
C10—N2—C13123.72 (12)O2—C11—N3122.87 (13)
N2—N3—C11108.88 (11)O2—C11—C9131.99 (13)
N2—N3—C14120.21 (11)N3—C11—C9105.10 (11)
C11—N3—C14122.99 (11)C10—C12—H12A109.5
O1—C1—H1A109.5C10—C12—H12B109.5
O1—C1—H1B109.5H12A—C12—H12B109.5
H1A—C1—H1B109.5C10—C12—H12C109.5
O1—C1—H1C109.5H12A—C12—H12C109.5
H1A—C1—H1C109.5H12B—C12—H12C109.5
H1B—C1—H1C109.5N2—C13—H13A109.5
C3—C2—C7121.80 (14)N2—C13—H13B109.5
C3—C2—H2119.1H13A—C13—H13B109.5
C7—C2—H2119.1N2—C13—H13C109.5
C2—C3—C4119.44 (14)H13A—C13—H13C109.5
C2—C3—H3120.3H13B—C13—H13C109.5
C4—C3—H3120.3C19—C14—C15120.21 (13)
O1—C4—C5115.63 (13)C19—C14—N3121.33 (12)
O1—C4—C3124.40 (14)C15—C14—N3118.43 (12)
C5—C4—C3119.96 (14)C16—C15—C14119.73 (14)
C6—C5—C4119.82 (14)C16—C15—H15120.1
C6—C5—H5120.1C14—C15—H15120.1
C4—C5—H5120.1C15—C16—C17120.42 (15)
C5—C6—C7121.49 (15)C15—C16—H16119.8
C5—C6—H6119.3C17—C16—H16119.8
C7—C6—H6119.3C18—C17—C16119.55 (15)
C2—C7—C6117.47 (14)C18—C17—H17120.2
C2—C7—C8122.03 (13)C16—C17—H17120.2
C6—C7—C8120.49 (14)C17—C18—C19120.96 (15)
N1—C8—C7121.58 (14)C17—C18—H18119.5
N1—C8—H8119.2C19—C18—H18119.5
C7—C8—H8119.2C18—C19—C14119.11 (14)
C10—C9—N1122.85 (13)C18—C19—H19120.4
C10—C9—C11107.85 (12)C14—C19—H19120.4
C10—N2—N3—C118.01 (14)N1—C9—C10—N2174.02 (12)
C13—N2—N3—C11152.76 (13)C11—C9—C10—N23.67 (15)
C10—N2—N3—C14157.91 (12)N1—C9—C10—C126.8 (2)
C13—N2—N3—C1457.34 (17)C11—C9—C10—C12175.47 (14)
C7—C2—C3—C40.8 (2)N2—N3—C11—O2172.13 (13)
C1—O1—C4—C5176.20 (15)C14—N3—C11—O223.2 (2)
C1—O1—C4—C35.1 (2)N2—N3—C11—C95.70 (14)
C2—C3—C4—O1179.46 (14)C14—N3—C11—C9154.58 (12)
C2—C3—C4—C50.8 (2)C10—C9—C11—O2176.20 (15)
O1—C4—C5—C6179.99 (15)N1—C9—C11—O21.3 (3)
C3—C4—C5—C61.3 (2)C10—C9—C11—N31.35 (15)
C4—C5—C6—C70.1 (3)N1—C9—C11—N3178.84 (13)
C3—C2—C7—C61.9 (2)N2—N3—C14—C1926.13 (19)
C3—C2—C7—C8179.11 (14)C11—N3—C14—C19119.41 (15)
C5—C6—C7—C21.4 (2)N2—N3—C14—C15155.59 (13)
C5—C6—C7—C8179.55 (15)C11—N3—C14—C1558.87 (18)
C9—N1—C8—C7179.36 (12)C19—C14—C15—C160.0 (2)
C2—C7—C8—N19.8 (2)N3—C14—C15—C16178.30 (14)
C6—C7—C8—N1171.25 (14)C14—C15—C16—C170.7 (2)
C8—N1—C9—C10177.98 (13)C15—C16—C17—C180.8 (3)
C8—N1—C9—C110.8 (2)C16—C17—C18—C190.2 (3)
N3—N2—C10—C97.20 (15)C17—C18—C19—C140.5 (2)
C13—N2—C10—C9149.25 (13)C15—C14—C19—C180.6 (2)
N3—N2—C10—C12172.00 (13)N3—C14—C19—C18178.82 (13)
C13—N2—C10—C1230.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.343.0310 (18)131
C5—H5···O2i0.932.563.2838 (19)135
C12—H12A···O2ii0.962.433.3815 (19)172
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H19N3O2
Mr321.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.1407 (10), 24.864 (3), 9.4733 (13)
β (°) 96.700 (2)
V3)1670.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11145, 3949, 2677
Rint0.022
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.04
No. of reflections3949
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C11.422 (2)N2—C101.3589 (18)
O1—C41.3684 (18)N2—C131.4620 (17)
O2—C111.2336 (16)N3—C111.4065 (17)
N1—C81.2754 (18)N3—C141.4181 (17)
N1—C91.3920 (17)C7—C81.460 (2)
N2—N31.4040 (15)C9—C111.436 (2)
C1—O1—C4117.94 (13)N2—N3—C14120.21 (11)
C8—N1—C9120.85 (13)C11—N3—C14122.99 (11)
N3—N2—C10107.12 (10)N1—C8—C7121.58 (14)
N3—N2—C13117.60 (11)O2—C11—N3122.87 (13)
C10—N2—C13123.72 (12)O2—C11—C9131.99 (13)
N2—N3—C11108.88 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.343.0310 (18)131
C5—H5···O2i0.932.563.2838 (19)135
C12—H12A···O2ii0.962.433.3815 (19)172
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds