Download citation
Download citation
link to html
In the structure of the title steroid, C23H34O3, the mol­ecules are linked in infinite chains through inter­molecular C11(n) O—H...O hydrogen bonds between the hydr­oxy proton and the ester carbonyl O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040912/tk6295sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040912/tk6295IIsup2.hkl
Contains datablock II

CCDC reference: 296686

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.041
  • wR factor = 0.111
  • Data-to-parameter ratio = 7.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.47 PLAT155_ALERT_4_C The Triclinic Unitcell is NOT Reduced .......... ? PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1756 Count of symmetry unique reflns 1758 Completeness (_total/calc) 99.89% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Recent research suggests that steroids such as ergosterol and fusidic acid display antitubercular activity (Ruggutt & Ruggutt, 2001). In fact, the minimum inhibitory concentration (MIC) for these steroids is comparable to a number of clinically used anti-TB drugs. This, as well as the structural similarity of the title compound, (II), with fusidic acid and ergosterol has prompted us to consider conjugation of this compound with a number of well known anti-TB agents (Ballell et al., 2005). Our aim is to increase the lipophilicity of the parent drug by attaching a steroid moiety which could have anti-TB activity in its own right. As part of this project, compound (II) was prepared from the commercially available ketone, dehydroandrosterone (I) (Verma et al., 2004), by the Wittig–Horner reaction (Wicha et al., 1977), and was recrystallized from methanol.

Compound (II) crystallizes in the space group P1 with one molecule in the unit cell. The fused tetracyclic ring system adopts the expected conformations for the all-transA/B/C/D junctions. The six-membered rings A and C adopt normal chair conformations. As previously observed in related structures (Thamotharan et al., 2004; Verma et al., 2004), the hydroxy group on C3 does not perturb the structure of ring A. The C5C6 bond length of 1.326 (5) Å confirms the presence of the double bond in this position and imposes an 8β,9α-half-chair conformation on ring B. Ring D adopts the 14α-envelope conformation previously observed in the dehydroandrosterone parent (Verma et al., 2004); this conformation minimizes steric interactions with the angular C18 methyl group (Fuchs, 1978).

The C17C20 bond length of 1.331 (5) Å confirms the presence of the double bond in this position. The substitutents on this bond adopt the thermodynamically favoured E configuration which, again, minimizes interactions with the angular methyl group. The C20—C21 bond length of 1.460 (5) Å suggests partial double-bond character, with the ester group adopting an s-trans configuration. The molecules in the crystal structure are linked through intermolecular C11(n) (Bernstein et al., 1995) O—H···O hydrogen bonds between the O3 hydroxy proton and the O21 carbonyl O atom (Table 2), forming infinite chains along the body diagonal of the unit cell.

The 1H and 13C NMR spectra of the compound were fully assigned using two-dimensional gCOSY, gHSQC and gHMBC methods. The lowfield 13C chemical shifts of the C17 (176.15 p.p.m.) and C21 (167.45 p.p.m.) C atoms were confirmed by the presence of unambiguous cross peaks in the gHMBC spectrum linking (i) the 176.15 p.p.m. resonance with the H18 and H16 resonances and (ii) the 167.45 p.p.m. resonance with the H20 and H22 resonances. The 13C chemical shift of C20 (108.62 p.p.m.) was confirmed by direct correlation of the C20 and H20 resonances in the gHSQC matrix. The 13C chemical shifts of the C17, C21 and C20 atoms can be compared with those previously observed for 13C nuclei in the isolated D-ring analogue methyl 2-methylenecyclopentane acetate (Molander & Harris, 1997), i.e. 169.51, 167.31 and 111.18 p.p.m., respectively.

Experimental top

A solution of sodium ethoxide (1.243 M, 5 ml) was added slowly to a stirred solution of dehydroisoandrosterone (600 mg, 2 mmol) and triethyl phosphonoacetate (1.6 ml, 6 mmol) in ethanol (5 ml) at room temperature, under an N2 atmosphere. The reaction mixture was refluxed for 20 h, then cooled to room temperature and concentrated in vacuo. The residue was diluted with water and the resulting suspension acidified (acetic acid) and extracted with a mixture of ethyl acetate and tetrahydrofuran (3:1, 60 ml). The organic layer was washed with water and brine, dried (Na2SO4) and the solvent removed by evaporation at reduced pressure. Crystallization of the residue from methanol gave the product ethyl 3β-hydroxypregna-5,17 (20)-dien-21-oate (525 mg, 70%) as fine colourless crystals, suitable for X-ray crystallographic analysis [m.p.: 457–9 K; literature 457–458 K (Wicha et al., 1977)]. 1H NMR (400 MHz, CDCl3, 298 K): δ 5.51 (1H, dd, J = 2.5, 2.5 Hz, H2O), 5.32 (1H, m, H6), 4.11 (2H, m, CH2, H22), 3.49 (1H, dddd, J = 4, 5, 11, 11 Hz, H3), 2.88–2.72 (2H, m, H16a,b), 2.31–2.15 (2H, m, H4a,b), 2.03 (1H, m, H7a), 1.85–1.72 (4H, br m, H12a, H15a, H1a, H2a), 1.68–1.41 (5H, br m, H11a,b, H8, H2b, H7b), 1.38–1.20 (2H, br m, H15b, H12b), 1.22 (3H, dd, CH3, H23), 1.10–0.91 (3H, m, H1b, H14, H9), 0.99 (3H, s, CH3, H19), 0.80 (3H, s, CH3, H18); 13C{1H} NMR (100 MHz, CDCl3, 298 K): δ 176.15 (C17), 167.45 (CO, C21), 140.82 (C5), 121.28 (C6), 108.62 (C20), 71.61 (C3), 59.50 (C22), 53.81 (C14), 50.21 (C9), 46.03 (C13), 42.20 (C4), 37.20 (C1), 36.56 (C10), 35.18 (C12), 31.64–31.55 (C7, C2, C8), 30.41 (C16), 24.45 (C15), 20.94 (C11), 19.39 (C19), 18.23 (C18), 14.36 (C23). ESMS (m/z): +ve ion, 381.15 [M + Na]+, 359.13, [M + H] +.

Refinement top

C-bound H atoms were constrained as riding atoms, with C—H = 0.94–0.96 Å, and with Uiso(H)= 1.2Ueq(parent atom). The hydroxy H atom was located in a difference Fourier synthesis and constrained as a riding atom, with O—H = 0.91 Å. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is assigned on the basis of the known configuration of the starting material.

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Representative view of (II), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Ethyl 3β-hydroxypregna-5,17 (20)-dien-21-oate top
Crystal data top
C23H34O3Z = 1
Mr = 358.50F(000) = 196
Triclinic, P1Dx = 1.187 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.7107 Å
a = 6.3179 (17) ÅCell parameters from 25 reflections
b = 8.0901 (16) Åθ = 12.7–17.3°
c = 10.880 (2) ŵ = 0.08 mm1
α = 73.8 (2)°T = 295 K
β = 100.311 (19)°Prism, colourless
γ = 109.285 (16)°0.40 × 0.35 × 0.20 mm
V = 501.7 (5) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.033
Radiation source: Rigaku rotating anodeθmax = 25.0°, θmin = 2.8°
Graphite monochromatorh = 77
ω–2θ scansk = 09
2086 measured reflectionsl = 1112
1756 independent reflections3 standard reflections every 150 reflections
1506 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.0627P]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max = 0.023
235 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H34O3γ = 109.285 (16)°
Mr = 358.50V = 501.7 (5) Å3
Triclinic, P1Z = 1
a = 6.3179 (17) ÅMo Kα radiation
b = 8.0901 (16) ŵ = 0.08 mm1
c = 10.880 (2) ÅT = 295 K
α = 73.8 (2)°0.40 × 0.35 × 0.20 mm
β = 100.311 (19)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.033
2086 measured reflections3 standard reflections every 150 reflections
1756 independent reflections intensity decay: 1.2%
1506 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1756 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Experimental. The scan width was (1.73 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.0849 (4)0.9636 (3)1.1570 (2)0.0604 (9)
O210.0540 (5)0.2129 (3)0.2577 (3)0.0655 (9)
O220.2529 (4)0.4108 (3)0.1955 (2)0.0536 (8)
C10.6876 (5)0.9347 (4)0.8535 (3)0.0473 (10)
C20.8309 (7)1.0190 (5)0.9610 (4)0.0543 (11)
C30.9404 (6)0.8873 (4)1.0563 (3)0.0476 (10)
C41.0809 (6)0.8287 (4)0.9877 (3)0.0477 (10)
C50.9449 (5)0.7482 (4)0.8786 (3)0.0413 (9)
C60.9428 (6)0.5873 (5)0.8702 (3)0.0492 (11)
C70.8129 (6)0.4944 (5)0.7670 (3)0.0517 (11)
C80.7240 (5)0.6185 (4)0.6518 (3)0.0407 (9)
C90.6315 (5)0.7437 (4)0.6964 (3)0.0380 (9)
C100.8103 (5)0.8621 (4)0.7802 (3)0.0390 (9)
C110.5107 (6)0.8535 (4)0.5832 (3)0.0477 (11)
C120.3327 (5)0.7395 (4)0.5006 (3)0.0461 (10)
C130.4329 (5)0.6232 (4)0.4540 (3)0.0388 (9)
C140.5359 (5)0.5092 (4)0.5720 (3)0.0393 (9)
C150.5749 (6)0.3668 (5)0.5194 (3)0.0490 (11)
C160.3638 (6)0.3179 (4)0.4260 (3)0.0476 (10)
C170.2711 (5)0.4778 (4)0.3912 (3)0.0403 (10)
C180.6053 (6)0.7415 (5)0.3549 (3)0.0529 (11)
C190.9796 (6)1.0199 (5)0.6967 (4)0.0552 (11)
C200.0809 (5)0.4933 (4)0.3200 (3)0.0451 (10)
C210.0754 (5)0.3561 (5)0.2572 (3)0.0465 (10)
C220.4185 (6)0.2935 (5)0.1228 (4)0.0600 (12)
C230.5828 (6)0.3922 (5)0.0518 (4)0.0636 (12)
H31.023301.037501.178000.0680*
H61.031100.525400.935500.0580*
H80.842700.688800.601000.0490*
H90.518000.666300.751500.0450*
H110.565500.837200.890600.0560*
H120.630101.023500.794000.0560*
H140.417300.445900.626900.0460*
H200.043600.601200.310200.0540*
H210.944701.123100.925600.0640*
H220.738101.050701.004900.0640*
H310.825500.783601.094400.0570*
H411.199900.930000.955500.0570*
H421.140200.740601.048600.0570*
H710.687100.398800.803600.0620*
H720.906800.445300.739600.0620*
H1110.438700.914700.617600.0560*
H1120.620000.937900.529900.0560*
H1210.211800.663500.551300.0550*
H1220.276900.816600.429300.0550*
H1510.707300.414100.476900.0580*
H1520.586000.264600.587600.0580*
H1610.401800.299200.351900.0560*
H1620.255600.210900.466900.0560*
H1810.698400.844300.385600.0630*
H1820.526500.779500.275100.0630*
H1830.695400.673600.345900.0630*
H1911.086701.088100.751700.0670*
H1920.901201.094400.637300.0670*
H1931.054700.973000.653400.0670*
H2210.493100.183400.179200.0720*
H2220.346900.266800.064100.0720*
H2310.680300.329400.007900.0740*
H2320.503900.509500.009900.0740*
H2330.671300.399100.112700.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0694 (17)0.0574 (15)0.0578 (15)0.0215 (13)0.0096 (12)0.0256 (12)
O210.0603 (15)0.0517 (14)0.0918 (19)0.0223 (12)0.0096 (14)0.0320 (14)
O220.0453 (12)0.0567 (14)0.0646 (15)0.0168 (11)0.0063 (11)0.0289 (12)
C10.0460 (17)0.0456 (18)0.0565 (19)0.0218 (15)0.0024 (14)0.0167 (15)
C20.061 (2)0.0469 (19)0.061 (2)0.0210 (16)0.0036 (17)0.0220 (16)
C30.0504 (18)0.0421 (17)0.0492 (18)0.0090 (14)0.0013 (14)0.0170 (14)
C40.0463 (17)0.0469 (18)0.0483 (18)0.0170 (14)0.0020 (14)0.0091 (15)
C50.0375 (15)0.0445 (17)0.0418 (16)0.0152 (13)0.0052 (12)0.0055 (14)
C60.0539 (19)0.0530 (19)0.0458 (17)0.0297 (15)0.0097 (14)0.0120 (14)
C70.065 (2)0.0505 (19)0.0487 (19)0.0343 (17)0.0079 (16)0.0136 (15)
C80.0443 (17)0.0385 (15)0.0414 (16)0.0179 (13)0.0036 (13)0.0062 (13)
C90.0381 (15)0.0366 (15)0.0411 (16)0.0151 (12)0.0069 (12)0.0053 (13)
C100.0349 (15)0.0361 (15)0.0437 (16)0.0118 (12)0.0029 (12)0.0050 (12)
C110.0546 (19)0.0416 (17)0.0525 (19)0.0265 (15)0.0079 (15)0.0135 (15)
C120.0440 (17)0.0453 (17)0.0524 (19)0.0234 (14)0.0053 (14)0.0109 (15)
C130.0369 (15)0.0367 (15)0.0388 (16)0.0113 (12)0.0030 (13)0.0027 (13)
C140.0413 (16)0.0376 (15)0.0402 (16)0.0180 (13)0.0077 (13)0.0013 (13)
C150.0550 (19)0.0446 (17)0.0519 (19)0.0242 (15)0.0003 (16)0.0100 (15)
C160.0552 (19)0.0414 (16)0.0478 (18)0.0180 (15)0.0043 (15)0.0093 (14)
C170.0441 (17)0.0376 (16)0.0394 (17)0.0130 (13)0.0098 (13)0.0049 (13)
C180.0519 (19)0.0521 (19)0.0427 (17)0.0075 (15)0.0092 (14)0.0012 (15)
C190.0463 (18)0.0489 (19)0.055 (2)0.0030 (15)0.0024 (15)0.0029 (16)
C200.0442 (17)0.0393 (17)0.0538 (19)0.0154 (13)0.0014 (14)0.0124 (14)
C210.0433 (17)0.0486 (18)0.0518 (19)0.0147 (14)0.0078 (14)0.0154 (15)
C220.052 (2)0.062 (2)0.067 (2)0.0109 (17)0.0031 (17)0.0298 (19)
C230.048 (2)0.061 (2)0.067 (2)0.0049 (17)0.0090 (17)0.0147 (18)
Geometric parameters (Å, º) top
O3—C31.436 (4)C2—H210.9400
O21—C211.208 (5)C2—H220.9500
O22—C211.340 (4)C3—H310.9600
O22—C221.445 (5)C4—H410.9400
O3—H30.9100C4—H420.9500
C1—C101.538 (5)C6—H60.9500
C1—C21.520 (5)C7—H710.9600
C2—C31.517 (5)C7—H720.9400
C3—C41.511 (5)C8—H80.9400
C4—C51.506 (5)C9—H90.9600
C5—C61.326 (5)C11—H1110.9500
C5—C101.536 (5)C11—H1120.9400
C6—C71.494 (5)C12—H1210.9600
C7—C81.521 (5)C12—H1220.9400
C8—C91.539 (5)C14—H140.9600
C8—C141.521 (5)C15—H1510.9400
C9—C111.546 (5)C15—H1520.9600
C9—C101.558 (5)C16—H1610.9400
C10—C191.549 (5)C16—H1620.9600
C11—C121.529 (5)C18—H1810.9500
C12—C131.522 (5)C18—H1820.9500
C13—C141.536 (5)C18—H1830.9400
C13—C171.517 (5)C19—H1910.9600
C13—C181.556 (5)C19—H1920.9400
C14—C151.524 (5)C19—H1930.9400
C15—C161.536 (5)C20—H200.9500
C16—C171.519 (5)C22—H2210.9600
C17—C201.331 (5)C22—H2220.9500
C20—C211.460 (5)C23—H2310.9500
C22—C231.493 (6)C23—H2320.9400
C1—H110.9600C23—H2330.9600
C1—H120.9500
O3···O21i2.964 (4)H20···O3vi2.8900
O3···C22ii3.382 (5)H20···C122.7300
O3···C23ii3.403 (5)H20···H1222.4000
O21···C162.949 (5)H20···H183vii2.5700
O21···O3iii2.964 (4)H21···C192.9000
O3···H221ii2.6800H21···H412.5200
O3···H20iv2.8900H21···H1912.3500
O21···H3iii2.0700H21···H231ii2.5200
O21···H1612.8000H22···H32.3700
O21···H1622.7200H22···H222i2.2700
O21···H2212.7000H31···O22iv2.8100
O21···H2222.5800H31···H112.5400
O21···H233v2.8700H41···C192.9200
O22···H31vi2.8100H41···H212.5200
O22···H161vii2.7600H41···H1912.3500
C16···O212.949 (5)H42···C20iv3.0800
C22···O3viii3.382 (5)H42···H62.2600
C23···O3viii3.403 (5)H71···H142.3700
C1···H1112.7800H72···C152.9500
C2···H1912.8500H111···C12.7800
C4···H1912.8200H111···H122.3100
C6···H92.9500H112···C182.7700
C7···H1522.9300H112···C192.6600
C8···H1932.9400H112···H1812.1100
C8···H1812.9700H112···H1922.1700
C11···H1812.6600H121···C203.0600
C11···H122.8600H121···H8vii2.5700
C11···H143.0600H121···H142.4000
C11···H1922.6800H122···C202.9800
C12···H202.7300H122···H202.4000
C15···H1832.6400H151···C182.8400
C15···H722.9500H151···C20v2.9500
C16···H1832.9500H151···H1832.2000
C18···H1512.8400H152···C72.9300
C18···H1122.7700H152···H12xiii2.5700
C18···H82.8200H161···O212.8000
C19···H412.9200H161···O22v2.7600
C19···H82.9500H161···C22v2.9400
C19···H212.9000H161···H221v2.5900
C19···H162ix3.0500H161···H233v2.5100
C19···H1122.6600H162···O212.7200
C20···H1222.9800H162···C19xiv3.0500
C20···H42vi3.0800H162···C213.0600
C20···H1823.0100H162···H193xiv2.5600
C20···H1213.0600H181···C82.9700
C20···H151vii2.9500H181···C112.6600
C21···H1623.0600H181···H82.5000
C22···H161vii2.9400H181···H1122.1100
C23···H6x2.9300H182···C203.0100
H3···O21i2.0700H183···C152.6400
H3···H222.3700H183···C162.9500
H6···C23xi2.9300H183···H20v2.5700
H6···H422.2600H183···H1512.2000
H8···C182.8200H191···C22.8500
H8···C192.9500H191···C42.8200
H8···H121v2.5700H191···H212.3500
H8···H1812.5000H191···H412.3500
H8···H1932.4100H192···C112.6800
H9···C62.9500H192···H122.4500
H9···H112.2400H192···H1122.1700
H9···H142.3900H193···C82.9400
H11···H92.2400H193···H82.4100
H11···H312.5400H193···H162ix2.5600
H11···H232iv2.5300H221···O3viii2.6800
H12···C112.8600H221···O212.7000
H12···H1112.3100H221···H161vii2.5900
H12···H152xii2.5700H222···O212.5800
H12···H1922.4500H222···H22iii2.2700
H14···C113.0600H231···H21viii2.5200
H14···H92.3900H232···H11vi2.5300
H14···H712.3700H233···O21vii2.8700
H14···H1212.4000H233···H161vii2.5100
C21—O22—C22117.1 (3)H41—C4—H42110.00
C3—O3—H3109.00C5—C6—H6117.00
C2—C1—C10115.5 (4)C7—C6—H6117.00
C1—C2—C3110.6 (4)C6—C7—H71108.00
O3—C3—C2112.6 (3)C6—C7—H72109.00
C2—C3—C4109.9 (3)C8—C7—H71109.00
O3—C3—C4107.8 (4)C8—C7—H72109.00
C3—C4—C5112.1 (4)H71—C7—H72109.00
C4—C5—C10116.3 (3)C7—C8—H8109.00
C6—C5—C10122.8 (4)C9—C8—H8109.00
C4—C5—C6120.9 (4)C14—C8—H8109.00
C5—C6—C7125.4 (4)C8—C9—H9106.00
C6—C7—C8113.3 (4)C10—C9—H9106.00
C7—C8—C9110.5 (3)C11—C9—H9106.00
C7—C8—C14110.5 (3)C9—C11—H111108.00
C9—C8—C14108.6 (3)C9—C11—H112108.00
C8—C9—C11111.8 (3)C12—C11—H111108.00
C10—C9—C11113.3 (3)C12—C11—H112108.00
C8—C9—C10113.2 (3)H111—C11—H112110.00
C1—C10—C5108.5 (3)C11—C12—H121109.00
C1—C10—C9108.7 (3)C11—C12—H122109.00
C5—C10—C9110.2 (3)C13—C12—H121109.00
C5—C10—C19107.7 (3)C13—C12—H122110.00
C1—C10—C19110.4 (3)H121—C12—H122109.00
C9—C10—C19111.4 (3)C8—C14—H14106.00
C9—C11—C12114.1 (3)C13—C14—H14106.00
C11—C12—C13110.7 (3)C15—C14—H14106.00
C12—C13—C14108.2 (3)C14—C15—H151111.00
C12—C13—C18110.8 (3)C14—C15—H152110.00
C14—C13—C17101.1 (3)C16—C15—H151112.00
C12—C13—C17117.5 (3)C16—C15—H152111.00
C17—C13—C18106.0 (3)H151—C15—H152109.00
C14—C13—C18113.1 (3)C15—C16—H161110.00
C8—C14—C15120.6 (4)C15—C16—H162110.00
C13—C14—C15103.7 (3)C17—C16—H161111.00
C8—C14—C13114.4 (3)C17—C16—H162111.00
C14—C15—C16103.1 (4)H161—C16—H162109.00
C15—C16—C17105.6 (3)C13—C18—H181109.00
C13—C17—C16108.2 (3)C13—C18—H182109.00
C16—C17—C20127.9 (4)C13—C18—H183109.00
C13—C17—C20124.0 (4)H181—C18—H182110.00
C17—C20—C21124.8 (4)H181—C18—H183110.00
O21—C21—O22123.0 (4)H182—C18—H183110.00
O22—C21—C20110.2 (4)C10—C19—H191109.00
O21—C21—C20126.8 (4)C10—C19—H192109.00
O22—C22—C23106.9 (4)C10—C19—H193109.00
C2—C1—H11108.00H191—C19—H192110.00
C2—C1—H12108.00H191—C19—H193110.00
C10—C1—H11108.00H192—C19—H193111.00
C10—C1—H12108.00C17—C20—H20117.00
H11—C1—H12109.00C21—C20—H20118.00
C1—C2—H21109.00O22—C22—H221110.00
C1—C2—H22109.00O22—C22—H222110.00
C3—C2—H21109.00C23—C22—H221110.00
C3—C2—H22109.00C23—C22—H222110.00
H21—C2—H22110.00H221—C22—H222109.00
O3—C3—H31109.00C22—C23—H231110.00
C2—C3—H31109.00C22—C23—H232109.00
C4—C3—H31109.00C22—C23—H233109.00
C3—C4—H41108.00H231—C23—H232111.00
C3—C4—H42108.00H231—C23—H233109.00
C5—C4—H41109.00H232—C23—H233109.00
C5—C4—H42109.00
C22—O22—C21—O212.6 (5)C8—C9—C10—C1162.4 (3)
C22—O22—C21—C20177.0 (3)C10—C9—C11—C12179.4 (3)
C21—O22—C22—C23173.6 (4)C8—C9—C11—C1251.3 (4)
C2—C1—C10—C1970.2 (4)C11—C9—C10—C169.0 (4)
C2—C1—C10—C9167.4 (3)C11—C9—C10—C5172.3 (3)
C10—C1—C2—C355.5 (5)C8—C9—C10—C1975.9 (4)
C2—C1—C10—C547.6 (4)C11—C9—C10—C1952.8 (4)
C1—C2—C3—O3177.7 (4)C9—C11—C12—C1353.7 (4)
C1—C2—C3—C457.5 (5)C11—C12—C13—C17169.3 (3)
C2—C3—C4—C556.3 (4)C11—C12—C13—C1455.8 (4)
O3—C3—C4—C5179.3 (3)C11—C12—C13—C1868.8 (4)
C3—C4—C5—C6127.2 (4)C18—C13—C14—C862.4 (4)
C3—C4—C5—C1052.4 (4)C18—C13—C14—C1570.9 (4)
C4—C5—C10—C1973.6 (4)C12—C13—C14—C860.8 (4)
C6—C5—C10—C1133.7 (4)C12—C13—C14—C15165.9 (3)
C4—C5—C6—C7179.5 (4)C17—C13—C14—C8175.2 (3)
C10—C5—C6—C70.1 (6)C17—C13—C14—C1541.9 (4)
C4—C5—C10—C145.9 (4)C18—C13—C17—C2090.9 (4)
C4—C5—C10—C9164.8 (3)C12—C13—C17—C2033.5 (5)
C6—C5—C10—C914.8 (5)C14—C13—C17—C1628.2 (4)
C6—C5—C10—C19106.8 (4)C12—C13—C17—C16145.7 (3)
C5—C6—C7—C814.0 (6)C18—C13—C17—C1689.9 (4)
C6—C7—C8—C14161.9 (4)C14—C13—C17—C20151.0 (4)
C6—C7—C8—C941.6 (5)C13—C14—C15—C1639.9 (4)
C7—C8—C9—C11172.3 (3)C8—C14—C15—C16169.6 (3)
C14—C8—C9—C10179.7 (3)C14—C15—C16—C1721.9 (4)
C7—C8—C9—C1058.3 (4)C15—C16—C17—C134.3 (4)
C7—C8—C14—C13179.3 (3)C15—C16—C17—C20174.9 (4)
C7—C8—C14—C1556.0 (4)C16—C17—C20—C211.9 (6)
C14—C8—C9—C1150.9 (4)C13—C17—C20—C21179.1 (4)
C9—C8—C14—C15177.3 (3)C17—C20—C21—O22178.5 (4)
C9—C8—C14—C1357.9 (4)C17—C20—C21—O211.8 (6)
C8—C9—C10—C543.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x1, y1, z1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x1, y, z1; (vii) x1, y, z; (viii) x2, y1, z1; (ix) x+1, y+1, z; (x) x2, y, z1; (xi) x+2, y, z+1; (xii) x, y+1, z; (xiii) x, y1, z; (xiv) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21i0.912.072.964 (4)167
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H34O3
Mr358.50
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.3179 (17), 8.0901 (16), 10.880 (2)
α, β, γ (°)73.8 (2), 100.311 (19), 109.285 (16)
V3)501.7 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2086, 1756, 1506
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.04
No. of reflections1756
No. of parameters235
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control Software for Windows, TEXSAN for Windows (Molecular Structure Corporation, 2001), TEXSAN for Windows and SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), TEXSAN for Windows and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O3—C31.436 (4)C5—C61.326 (5)
O21—C211.208 (5)C17—C201.331 (5)
O22—C211.340 (4)C20—C211.460 (5)
O22—C221.445 (5)
C21—O22—C22117.1 (3)O22—C21—C20110.2 (4)
O3—C3—C2112.6 (3)O21—C21—C20126.8 (4)
O3—C3—C4107.8 (4)O22—C22—C23106.9 (4)
O21—C21—O22123.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O21i0.912.072.964 (4)167
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds