Download citation
Download citation
link to html
Single crystals of ErNiSi2 were synthesized from the corresponding elements by arc melting. The ternary inter­metallic compound crystallizes in the ortho­rhom­bic space group Cmcm and adopts the CeNiSi2 structure type [Bodak & Gladyshevskii (1969). Kristallografiya, 14, 990-994], with all four crystallographically unique atoms in special positions of site symmetry m2m.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040262/wm6126sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040262/wm6126Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](i-Si) = 0.001 Å
  • R factor = 0.025
  • wR factor = 0.057
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.002 0.199 Tmin and Tmax expected: 0.001 0.198 RR = 1.576 Please check that your absorption correction is appropriate.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Ternary intermetallics of rare earth metals with the general formula RETX2 (where RE is a rare earth metal, T is a transition metal and X is a p-block element) crystallize mostly in 23 structure types (Parthé et al., 1993–1994), viz. monoclinic NdRuSi2, CeCoC2 and LaCuS2, orthorhombic CeNiSi2, YIrGe2, LuMnGe2, ZrCrSi2, CeRhGe2, TbFeSi2, LaTmIr2Ge4, LuNiSn2, NdAgAs2, MgCuAl2, NdNiGa2, CeRhSn2 (Niepmann et al., 1999), ScRhSi2, ScFeSi2, CeNiC2, ScCoC2 and LuRuB2, and tetragonal HfCuSi2, ScCoC2 and LaRhC2.

The RETX2 phases have been the focus of special attention due to their interesting magnetic and electric properties, e.g. the Kondo effect. An accurate determination of the crystal structure for phases of this composition is a basic requirement for the better understanding of their physical properties. The existence of the phase ErNiSi2 was first reported by Bodak & Gladyshevskii (1969) who, on the basis of X-ray powder diffraction data, established that the crystal structure adopts the orthorhombic CeNiSi2 structure type. Analogous results were obtained by Gil et al. (1994). In these investigations, any information about structural data (atomic coordinates, displacement parameters) was not presented. Thus, it seemed appropriate to determine completely the crystal structure of ErNiSi2, and we present these results here.

ErNiSi2 adopts the CeNiSi2 structure type (Bodak & Gladyshevskii, 1969). A clinographic projection of the unit-cell contents is shown in Fig. 1. The coordination sphere around Er (site symmetry m2m) consists of 21 atoms, if bonding interactions are considered for distances < 4.0 Å, resulting in an [ErSi4Ni4Si6NiEr6] polyhedron (Fig. 2a). The coordination polyhedron around the Ni atom (site symmetry m2m) is a monocapped tetragonal antiprism, [NiSi5Er4], made up of 4 Er atoms in one basal plane with a capping Si atom, and 4 Si atoms in the second basal plane, if bonding interactions are considered for distances < 3.1 Å (Fig. 2b). The coordination polyhedron around atom Si1 (site symmetry m2m, bonding interactions < 3.1 Å) is a tricapped trigonal prism, [Si1NiSi2Er6], with one additional Ni and two Er atoms as capping atoms (Fig. 2c). The coordination polyhedron around atom Si2 (site symmetry m2m, bonding interactions < 3.1 Å) is a distorted cuboctahedron, [Si2Ni4Si4Er4] (Fig. 2d).

The interatomic distances (Table 1) are in good agreement with the sums of the atomic radii (Emsley, 1991). The shortest distance with the highest deviation (93% of the sum of the atomic radii) is observed between Ni and Si atoms, with an Ni—Si distance of 2.255 (3) Å.

Experimental top

The single-crystal used in this work was extracted from an alloy with nominal composition Er23Ni27Si50, which was prepared by arc melting of the initial components (purity better than 99.9%) in an electric arc furnace with a water-cooled copper bottom (Ti-getter) under an argon atmosphere, and annealwed at 870 K. A preliminary crystal investigation was performed using Laue and rotation methods (RKV-86 and RGNS-2 chambers, Mo Kα radiation).

Refinement top

Atomic coordinates were standardized using the STRUCTURETIDY program (Gelato & Parthé, 1987). The highest maximum residual electron density is 1.06 Å from atom Si1 and the deepest hole is 0.65 Å from the Er atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A clinographic projection of the ErNiSi2 unit-cell contents, with displacement ellipsoids drawn at the 95% probability level.
[Figure 2] Fig. 2. The coordination polyhedra around (a) the Er atom, (b) the Ni atom, and (c) and (d) the Si atoms. Er atoms are blue, Ni atoms are green and Si atoms are red.
Erbium nickel disilicide top
Crystal data top
ErNiSi2F(000) = 496
Mr = 282.15Dx = 7.327 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1017 reflections
a = 3.9423 (9) Åθ = 4.9–32.7°
b = 16.502 (3) ŵ = 40.49 mm1
c = 3.9319 (9) ÅT = 295 K
V = 255.79 (9) Å3Plate, metallic light grey
Z = 40.21 × 0.19 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD area-detector
diffractometer
281 independent reflections
Radiation source: fine-focus sealed tube280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 32.7°, θmin = 4.9°
Absorption correction: analytical
CrysAlis RED (Oxford Diffraction, 2005)
h = 54
Tmin = 0.002, Tmax = 0.199k = 2423
1025 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.023P)2 + 5.5174P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.33Δρmax = 4.29 e Å3
281 reflectionsΔρmin = 2.85 e Å3
18 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0048 (7)
Crystal data top
ErNiSi2V = 255.79 (9) Å3
Mr = 282.15Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 3.9423 (9) ŵ = 40.49 mm1
b = 16.502 (3) ÅT = 295 K
c = 3.9319 (9) Å0.21 × 0.19 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD area-detector
diffractometer
281 independent reflections
Absorption correction: analytical
CrysAlis RED (Oxford Diffraction, 2005)
280 reflections with I > 2σ(I)
Tmin = 0.002, Tmax = 0.199Rint = 0.039
1025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02518 parameters
wR(F2) = 0.0570 restraints
S = 1.33Δρmax = 4.29 e Å3
281 reflectionsΔρmin = 2.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er0.00000.10553 (2)0.25000.00534 (19)
Ni0.00000.32389 (7)0.25000.0063 (3)
Si10.00000.46055 (16)0.25000.0062 (4)
Si20.00000.74973 (16)0.25000.0060 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er0.0039 (2)0.0069 (2)0.0052 (2)0.0000.0000.000
Ni0.0057 (5)0.0064 (5)0.0069 (5)0.0000.0000.000
Si10.0066 (10)0.0068 (10)0.0052 (11)0.0000.0000.000
Si20.0054 (10)0.0050 (8)0.0075 (12)0.0000.0000.000
Geometric parameters (Å, º) top
Er—Si1i2.9899 (10)Ni—Eri3.0178 (6)
Er—Si1ii2.9899 (10)Ni—Eriv3.0178 (6)
Er—Si1iii2.9899 (10)Ni—Eriii3.0178 (6)
Er—Si1iv2.9899 (10)Si1—Si1vii2.358 (3)
Er—Niii3.0178 (6)Si1—Si1viii2.358 (3)
Er—Nii3.0178 (6)Si1—Eri2.9899 (10)
Er—Niiv3.0178 (6)Si1—Erii2.9899 (10)
Er—Niiii3.0178 (6)Si1—Eriv2.9899 (10)
Er—Si2v3.090 (2)Si1—Eriii2.9899 (10)
Er—Si2vi3.090 (2)Si1—Erxiii3.100 (2)
Er—Si2vii3.094 (2)Si1—Erxiv3.100 (2)
Er—Si2viii3.094 (2)Si2—Niviii2.3110 (15)
Er—Si1vi3.100 (2)Si2—Nivii2.3110 (15)
Er—Si1v3.100 (2)Si2—Nixiii2.3202 (15)
Er—Erix3.9319 (9)Si2—Nixiv2.3202 (15)
Er—Erx3.9319 (9)Si2—Si2xv2.7840 (5)
Er—Erxi3.9423 (9)Si2—Si2xvi2.7840 (5)
Er—Erxii3.9423 (9)Si2—Si2xvii2.7840 (5)
Ni—Si12.255 (3)Si2—Si2xviii2.7840 (5)
Ni—Si2viii2.3110 (15)Si2—Erxiv3.090 (2)
Ni—Si2vii2.3110 (15)Si2—Erxiii3.090 (2)
Ni—Si2vi2.3202 (15)Si2—Ervii3.094 (2)
Ni—Si2v2.3202 (15)Si2—Erviii3.094 (2)
Ni—Erii3.0178 (6)
Si1i—Er—Si1ii137.22 (9)Si2vii—Er—Erxii90.0
Si1i—Er—Si1iii82.22 (4)Si2viii—Er—Erxii90.0
Si1ii—Er—Si1iii82.49 (4)Si1vi—Er—Erxii129.49 (3)
Si1i—Er—Si1iv82.49 (4)Si1v—Er—Erxii50.51 (3)
Si1ii—Er—Si1iv82.22 (4)Erix—Er—Erxii90.0
Si1iii—Er—Si1iv137.22 (9)Erx—Er—Erxii90.0
Si1i—Er—Niii178.69 (5)Erxi—Er—Erxii180.00 (2)
Si1ii—Er—Niii44.09 (6)Si1—Ni—Si2viii121.71 (6)
Si1iii—Er—Niii98.22 (3)Si1—Ni—Si2vii121.71 (6)
Si1iv—Er—Niii97.96 (3)Si2viii—Ni—Si2vii116.57 (12)
Si1i—Er—Nii44.09 (6)Si1—Ni—Si2vi121.83 (6)
Si1ii—Er—Nii178.69 (5)Si2viii—Ni—Si2vi73.90 (2)
Si1iii—Er—Nii97.96 (3)Si2vii—Ni—Si2vi73.90 (2)
Si1iv—Er—Nii98.22 (3)Si1—Ni—Si2v121.83 (6)
Niii—Er—Nii134.59 (4)Si2viii—Ni—Si2v73.90 (2)
Si1i—Er—Niiv98.22 (3)Si2vii—Ni—Si2v73.90 (2)
Si1ii—Er—Niiv97.96 (3)Si2vi—Ni—Si2v116.33 (12)
Si1iii—Er—Niiv178.69 (5)Si1—Ni—Erii67.30 (2)
Si1iv—Er—Niiv44.09 (6)Si2viii—Ni—Erii139.207 (12)
Niii—Er—Niiv81.30 (2)Si2vii—Ni—Erii69.43 (4)
Nii—Er—Niiv81.56 (2)Si2vi—Ni—Erii139.332 (12)
Si1i—Er—Niiii97.96 (3)Si2v—Ni—Erii69.43 (4)
Si1ii—Er—Niiii98.22 (3)Si1—Ni—Eri67.30 (2)
Si1iii—Er—Niiii44.09 (6)Si2viii—Ni—Eri69.43 (4)
Si1iv—Er—Niiii178.69 (5)Si2vii—Ni—Eri139.207 (12)
Niii—Er—Niiii81.56 (2)Si2vi—Ni—Eri69.43 (4)
Nii—Er—Niiii81.30 (2)Si2v—Ni—Eri139.332 (12)
Niiv—Er—Niiii134.59 (4)Erii—Ni—Eri134.59 (4)
Si1i—Er—Si2v134.54 (4)Si1—Ni—Eriv67.30 (2)
Si1ii—Er—Si2v81.97 (5)Si2viii—Ni—Eriv69.43 (4)
Si1iii—Er—Si2v134.54 (4)Si2vii—Ni—Eriv139.207 (12)
Si1iv—Er—Si2v81.97 (5)Si2vi—Ni—Eriv139.332 (12)
Niii—Er—Si2v44.45 (2)Si2v—Ni—Eriv69.43 (4)
Nii—Er—Si2v96.86 (3)Erii—Ni—Eriv81.30 (2)
Niiv—Er—Si2v44.45 (2)Eri—Ni—Eriv81.56 (2)
Niiii—Er—Si2v96.86 (3)Si1—Ni—Eriii67.30 (2)
Si1i—Er—Si2vi81.97 (5)Si2viii—Ni—Eriii139.207 (12)
Si1ii—Er—Si2vi134.54 (4)Si2vii—Ni—Eriii69.43 (4)
Si1iii—Er—Si2vi81.97 (5)Si2vi—Ni—Eriii69.43 (4)
Si1iv—Er—Si2vi134.54 (4)Si2v—Ni—Eriii139.332 (12)
Niii—Er—Si2vi96.86 (3)Erii—Ni—Eriii81.56 (2)
Nii—Er—Si2vi44.45 (2)Eri—Ni—Eriii81.30 (2)
Niiv—Er—Si2vi96.86 (3)Eriv—Ni—Eriii134.59 (4)
Niiii—Er—Si2vi44.45 (2)Ni—Si1—Si1vii123.51 (11)
Si2v—Er—Si2vi79.27 (6)Ni—Si1—Si1viii123.51 (11)
Si1i—Er—Si2vii134.38 (4)Si1vii—Si1—Si1viii113.0 (2)
Si1ii—Er—Si2vii82.17 (5)Ni—Si1—Eri68.61 (5)
Si1iii—Er—Si2vii82.17 (5)Si1vii—Si1—Eri138.56 (3)
Si1iv—Er—Si2vii134.38 (4)Si1viii—Si1—Eri69.71 (4)
Niii—Er—Si2vii44.60 (2)Ni—Si1—Erii68.61 (5)
Nii—Er—Si2vii96.66 (3)Si1vii—Si1—Erii69.71 (4)
Niiv—Er—Si2vii96.66 (3)Si1viii—Si1—Erii138.56 (3)
Niiii—Er—Si2vii44.60 (2)Eri—Si1—Erii137.22 (9)
Si2v—Er—Si2vii53.516 (10)Ni—Si1—Eriv68.61 (5)
Si2vi—Er—Si2vii53.516 (10)Si1vii—Si1—Eriv138.56 (3)
Si1i—Er—Si2viii82.17 (5)Si1viii—Si1—Eriv69.71 (4)
Si1ii—Er—Si2viii134.38 (4)Eri—Si1—Eriv82.49 (4)
Si1iii—Er—Si2viii134.38 (4)Erii—Si1—Eriv82.22 (4)
Si1iv—Er—Si2viii82.17 (5)Ni—Si1—Eriii68.61 (5)
Niii—Er—Si2viii96.66 (3)Si1vii—Si1—Eriii69.71 (4)
Nii—Er—Si2viii44.60 (2)Si1viii—Si1—Eriii138.56 (3)
Niiv—Er—Si2viii44.60 (2)Eri—Si1—Eriii82.22 (4)
Niiii—Er—Si2viii96.66 (3)Erii—Si1—Eriii82.49 (4)
Si2v—Er—Si2viii53.516 (10)Eriv—Si1—Eriii137.22 (9)
Si2vi—Er—Si2viii53.516 (10)Ni—Si1—Erxiii140.51 (3)
Si2vii—Er—Si2viii78.91 (6)Si1vii—Si1—Erxiii64.78 (9)
Si1i—Er—Si1vi45.52 (5)Si1viii—Si1—Erxiii64.78 (9)
Si1ii—Er—Si1vi97.92 (2)Eri—Si1—Erxiii134.48 (5)
Si1iii—Er—Si1vi45.52 (5)Erii—Si1—Erxiii82.08 (2)
Si1iv—Er—Si1vi97.92 (2)Eriv—Si1—Erxiii82.08 (2)
Niii—Er—Si1vi135.50 (2)Eriii—Si1—Erxiii134.48 (5)
Nii—Er—Si1vi83.25 (3)Ni—Si1—Erxiv140.51 (3)
Niiv—Er—Si1vi135.50 (2)Si1vii—Si1—Erxiv64.78 (9)
Niiii—Er—Si1vi83.25 (3)Si1viii—Si1—Erxiv64.78 (9)
Si2v—Er—Si1vi179.85 (4)Eri—Si1—Erxiv82.08 (2)
Si2vi—Er—Si1vi100.88 (5)Erii—Si1—Erxiv134.48 (5)
Si2vii—Er—Si1vi126.58 (3)Eriv—Si1—Erxiv134.48 (5)
Si2viii—Er—Si1vi126.58 (3)Eriii—Si1—Erxiv82.08 (2)
Si1i—Er—Si1v97.92 (2)Erxiii—Si1—Erxiv78.97 (6)
Si1ii—Er—Si1v45.52 (5)Niviii—Si2—Nivii116.57 (12)
Si1iii—Er—Si1v97.92 (2)Niviii—Si2—Nixiii106.10 (2)
Si1iv—Er—Si1v45.52 (5)Nivii—Si2—Nixiii106.10 (2)
Niii—Er—Si1v83.25 (3)Niviii—Si2—Nixiv106.10 (2)
Nii—Er—Si1v135.50 (2)Nivii—Si2—Nixiv106.10 (2)
Niiv—Er—Si1v83.25 (3)Nixiii—Si2—Nixiv116.33 (12)
Niiii—Er—Si1v135.50 (2)Niviii—Si2—Si2xv127.04 (10)
Si2v—Er—Si1v100.88 (5)Nivii—Si2—Si2xv53.20 (5)
Si2vi—Er—Si1v179.85 (4)Nixiii—Si2—Si2xv52.90 (5)
Si2vii—Er—Si1v126.58 (3)Nixiv—Si2—Si2xv126.86 (10)
Si2viii—Er—Si1v126.58 (3)Niviii—Si2—Si2xvi53.20 (5)
Si1vi—Er—Si1v78.97 (6)Nivii—Si2—Si2xvi127.04 (10)
Si1i—Er—Erix48.888 (18)Nixiii—Si2—Si2xvi126.86 (10)
Si1ii—Er—Erix131.112 (18)Nixiv—Si2—Si2xvi52.90 (5)
Si1iii—Er—Erix131.112 (18)Si2xv—Si2—Si2xvi179.6 (2)
Si1iv—Er—Erix48.888 (18)Niviii—Si2—Si2xvii127.04 (10)
Niii—Er—Erix130.652 (11)Nivii—Si2—Si2xvii53.20 (5)
Nii—Er—Erix49.348 (11)Nixiii—Si2—Si2xvii126.86 (10)
Niiv—Er—Erix49.348 (11)Nixiv—Si2—Si2xvii52.90 (5)
Niiii—Er—Erix130.652 (11)Si2xv—Si2—Si2xvii90.151 (19)
Si2v—Er—Erix90.0Si2xvi—Si2—Si2xvii89.848 (19)
Si2vi—Er—Erix90.0Niviii—Si2—Si2xviii53.20 (5)
Si2vii—Er—Erix129.46 (3)Nivii—Si2—Si2xviii127.04 (10)
Si2viii—Er—Erix50.54 (3)Nixiii—Si2—Si2xviii52.90 (5)
Si1vi—Er—Erix90.0Nixiv—Si2—Si2xviii126.86 (10)
Si1v—Er—Erix90.0Si2xv—Si2—Si2xviii89.848 (19)
Si1i—Er—Erx131.112 (18)Si2xvi—Si2—Si2xviii90.151 (19)
Si1ii—Er—Erx48.888 (18)Si2xvii—Si2—Si2xviii179.6 (2)
Si1iii—Er—Erx48.888 (18)Niviii—Si2—Erxiv66.12 (5)
Si1iv—Er—Erx131.112 (18)Nivii—Si2—Erxiv66.12 (5)
Niii—Er—Erx49.348 (11)Nixiii—Si2—Erxiv161.47 (9)
Nii—Er—Erx130.652 (11)Nixiv—Si2—Erxiv82.20 (4)
Niiv—Er—Erx130.652 (11)Si2xv—Si2—Erxiv117.01 (11)
Niiii—Er—Erx49.348 (11)Si2xvi—Si2—Erxiv63.31 (7)
Si2v—Er—Erx90.0Si2xvii—Si2—Erxiv63.31 (7)
Si2vi—Er—Erx90.0Si2xviii—Si2—Erxiv117.01 (11)
Si2vii—Er—Erx50.54 (3)Niviii—Si2—Erxiii66.12 (5)
Si2viii—Er—Erx129.46 (3)Nivii—Si2—Erxiii66.12 (5)
Si1vi—Er—Erx90.0Nixiii—Si2—Erxiii82.20 (4)
Si1v—Er—Erx90.0Nixiv—Si2—Erxiii161.47 (9)
Erix—Er—Erx180.000 (10)Si2xv—Si2—Erxiii63.31 (7)
Si1i—Er—Erxi48.756 (18)Si2xvi—Si2—Erxiii117.01 (11)
Si1ii—Er—Erxi131.244 (18)Si2xvii—Si2—Erxiii117.01 (11)
Si1iii—Er—Erxi48.756 (18)Si2xviii—Si2—Erxiii63.31 (7)
Si1iv—Er—Erxi131.244 (18)Erxiv—Si2—Erxiii79.27 (6)
Niii—Er—Erxi130.782 (11)Niviii—Si2—Ervii161.17 (9)
Nii—Er—Erxi49.218 (11)Nivii—Si2—Ervii82.26 (4)
Niiv—Er—Erxi130.782 (11)Nixiii—Si2—Ervii65.97 (5)
Niiii—Er—Erxi49.218 (11)Nixiv—Si2—Ervii65.97 (5)
Si2v—Er—Erxi129.64 (3)Si2xv—Si2—Ervii63.18 (7)
Si2vi—Er—Erxi50.36 (3)Si2xvi—Si2—Ervii116.51 (11)
Si2vii—Er—Erxi90.0Si2xvii—Si2—Ervii63.18 (7)
Si2viii—Er—Erxi90.0Si2xviii—Si2—Ervii116.51 (11)
Si1vi—Er—Erxi50.51 (3)Erxiv—Si2—Ervii126.484 (10)
Si1v—Er—Erxi129.49 (3)Erxiii—Si2—Ervii126.484 (10)
Erix—Er—Erxi90.0Niviii—Si2—Erviii82.26 (4)
Erx—Er—Erxi90.0Nivii—Si2—Erviii161.17 (9)
Si1i—Er—Erxii131.244 (18)Nixiii—Si2—Erviii65.97 (5)
Si1ii—Er—Erxii48.756 (18)Nixiv—Si2—Erviii65.97 (5)
Si1iii—Er—Erxii131.244 (18)Si2xv—Si2—Erviii116.51 (11)
Si1iv—Er—Erxii48.756 (18)Si2xvi—Si2—Erviii63.18 (7)
Niii—Er—Erxii49.218 (11)Si2xvii—Si2—Erviii116.51 (11)
Nii—Er—Erxii130.782 (11)Si2xviii—Si2—Erviii63.18 (7)
Niiv—Er—Erxii49.218 (11)Erxiv—Si2—Erviii126.484 (10)
Niiii—Er—Erxii130.782 (11)Erxiii—Si2—Erviii126.484 (10)
Si2v—Er—Erxii50.36 (3)Ervii—Si2—Erviii78.91 (6)
Si2vi—Er—Erxii129.64 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z; (vi) x1/2, y1/2, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x, y, z1; (x) x, y, z+1; (xi) x1, y, z; (xii) x+1, y, z; (xiii) x+1/2, y+1/2, z; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+3/2, z+1; (xvi) x1/2, y+3/2, z; (xvii) x1/2, y+3/2, z+1; (xviii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaErNiSi2
Mr282.15
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)295
a, b, c (Å)3.9423 (9), 16.502 (3), 3.9319 (9)
V3)255.79 (9)
Z4
Radiation typeMo Kα
µ (mm1)40.49
Crystal size (mm)0.21 × 0.19 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD area-detector
diffractometer
Absorption correctionAnalytical
CrysAlis RED (Oxford Diffraction, 2005)
Tmin, Tmax0.002, 0.199
No. of measured, independent and
observed [I > 2σ(I)] reflections
1025, 281, 280
Rint0.039
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.33
No. of reflections281
No. of parameters18
Δρmax, Δρmin (e Å3)4.29, 2.85

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Er—Si1i2.9899 (10)Ni—Si12.255 (3)
Er—Niii3.0178 (6)Ni—Si2vii2.3110 (15)
Er—Si2iii3.090 (2)Ni—Si2iv2.3202 (15)
Er—Si1iv3.100 (2)Si1—Si1viii2.358 (3)
Er—Erv3.9319 (9)Si2—Si2ix2.7840 (5)
Er—Ervi3.9423 (9)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z; (v) x, y, z1; (vi) x1, y, z; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds