Download citation
Download citation
link to html
The title compound, C15H18N2O6, has two pyrrole–carboxyl­ate groups which show different conformations. It forms tapes via N—H...O and O—H...O hydrogen bonds. The tapes are connected through pairs of N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039486/ww6449sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039486/ww6449Isup2.hkl
Contains datablock I

CCDC reference: 296703

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.099
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C14 - C15 .. 5.43 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Pyrrole-based compounds have frequently been observed as hosts for neutral molecules (Fang et al., 2004) and anionic species (Yin et al., 2004). It was found that these compounds also have the ability to form higher-order self-assembled ensembles and aggregates in the solid state via hydrogen bonds (Sessler et al., 2003). Here, we report the self-assembly of the title compound, (I), via conventional N—H···O and O—H···O hydrogen bonds.

Treatment of 2-trichloroacetylpyrrole with pentaerythritol and triethylamine in refluxed acetonitrile solution gave the title compound directly. The molecular structure of (I) is shown in Fig. 1.

Compound (I) possesses two pyrrole-2-carboxylate moieties and two hydroxyl groups. Interestingly, in the solid state, the two pyrrole-2-carboxylate moieties have different conformations. One is in a syn conformation, with the carbonyl group arranged syn to its adjacent pyrrole NH group, and the other is in an anti conformation, with the carbonyl group arranged anti to its adjacent pyrrole NH group.

There is an intramolecular O—H···O hydrogen bond between the hydroxyl group (O3—H) and the carbonyl group (O6C11) from the syn pyrrole-2-carboxylate moiety [O···O 2.937 (2) Å and 150 (3)°]. Molecules of (I) assemble as a tape through N—H···O [N···O 2.989 (3) Å and 173 (2)°] and O—H···O hydrogen bonds [O···O 2.769 (2) Å and 166 (2)°], as shown in Fig. 2. The tapes are further linked by a pair of N—H···O hydrogen bonds [N···O 2.936 (3) Å and 160 (2)°] between neighbouring syn pyrrole-2-carboxylate moieties (Fig. 3).

Experimental top

2-Trichloroacetylpyrrole (527 mg, 2.5 mmol), pentaerythritol (136 mg, 1 mmol) and triethylamine (0.5 ml) were added to an acetonitrile solution Of what? (20 ml), and the mixture was refluxed for 12 h. The solution was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel with ethyl acetate–petroleum ether (2:1 v/v), affording the title compound (177 mg, 55%). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 9.20 (b, 2H, NH), 6.99 (s, 2H, –CH–), 6.96 (s, 2H, –CH–), 6.29 (s, 2H, –CH–), 4.40 (s, 4H, –CH2—O), 3.66 (d, 4H, J = 4.8 Hz, –CH2—OH). ESI-MS (m/z): 322.9 (M+H+). Analysis calculated for C15H18N2O6: C 55.90, H 5.63, N 8.69%; found: C 55.67, H 5.64, N 8.66%.

Refinement top

H atoms bound to O and N were located in a difference map and refined freely. Other H atoms were placed in difference Fourier map [Positioned geometrically?], with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure and atomic numbering scheme of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The tape-like self-assembly of molecules of (I) via O—H···O and N—H···O hydrogen bonds (dashed lines). [Symmetry codes: (A) x − 1, y, z; (B) x, y, z; (C) x + 1, y, z.]
[Figure 3] Fig. 3. A crystal packing diagram, showing tapes held together via pairs of N—H···O hydrogen bonds (dashed lines).
2,2-Bis(hydroxymethyl)propane-1,3-diyl bis(1H-pyrrole-2-carboxylate) top
Crystal data top
C15H18N2O6Z = 2
Mr = 322.31F(000) = 340
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Melting point: 411 K
a = 6.434 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.212 (3) ÅCell parameters from 1172 reflections
c = 13.715 (4) Åθ = 2.3–24.7°
α = 73.202 (5)°µ = 0.11 mm1
β = 85.533 (5)°T = 294 K
γ = 89.330 (5)°Block, colourless
V = 775.8 (4) Å30.32 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 76
Tmin = 0.949, Tmax = 0.989k = 1010
3971 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.0475P]
where P = (Fo2 + 2Fc2)/3
2713 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H18N2O6γ = 89.330 (5)°
Mr = 322.31V = 775.8 (4) Å3
Triclinic, P1Z = 2
a = 6.434 (2) ÅMo Kα radiation
b = 9.212 (3) ŵ = 0.11 mm1
c = 13.715 (4) ÅT = 294 K
α = 73.202 (5)°0.32 × 0.20 × 0.10 mm
β = 85.533 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1733 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.989Rint = 0.021
3971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
2713 reflectionsΔρmin = 0.16 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1565 (2)0.2613 (2)1.17072 (12)0.0699 (5)
O20.4200 (2)0.28789 (16)1.04926 (10)0.0398 (4)
O30.6099 (2)0.3316 (2)0.82510 (12)0.0623 (5)
H30.598 (4)0.377 (3)0.765 (2)0.093*
O40.1119 (2)0.2491 (2)0.97534 (12)0.0576 (5)
H40.185 (4)0.288 (3)0.923 (2)0.086*
O50.0965 (2)0.38472 (16)0.72687 (10)0.0398 (4)
O60.4046 (2)0.45053 (19)0.63450 (11)0.0550 (4)
N10.6851 (3)0.1343 (2)1.18723 (15)0.0436 (5)
H10.738 (3)0.174 (2)1.1290 (16)0.047 (7)*
N20.2372 (4)0.3609 (2)0.47449 (14)0.0497 (5)
H20.355 (4)0.407 (3)0.457 (2)0.075 (10)*
C10.7764 (4)0.0464 (3)1.26842 (19)0.0543 (6)
H1A0.91710.02221.27000.065*
C20.6284 (4)0.0015 (3)1.34805 (17)0.0555 (7)
H2A0.64940.06431.41290.067*
C30.4411 (4)0.0611 (3)1.31409 (16)0.0499 (6)
H3A0.31340.04841.35250.060*
C40.4770 (3)0.1454 (2)1.21380 (15)0.0366 (5)
C50.3338 (3)0.2349 (2)1.14564 (15)0.0395 (5)
C60.2990 (3)0.3878 (2)0.97391 (15)0.0394 (5)
H6A0.37810.48020.94090.047*
H6B0.17220.41481.00740.047*
C70.2428 (3)0.3129 (2)0.89353 (14)0.0291 (5)
C80.4321 (3)0.2343 (2)0.85818 (15)0.0409 (5)
H8A0.46710.14780.91400.049*
H8B0.39610.19660.80250.049*
C90.0738 (3)0.1922 (2)0.93779 (15)0.0407 (5)
H9A0.04060.14670.88530.049*
H9B0.12780.11320.99300.049*
C100.1661 (3)0.4408 (2)0.80711 (14)0.0376 (5)
H10A0.05190.49170.83360.045*
H10B0.27790.51430.77920.045*
C110.2267 (3)0.3999 (2)0.64317 (15)0.0393 (5)
C120.1320 (3)0.3482 (2)0.56765 (15)0.0393 (5)
C130.0548 (4)0.2787 (2)0.56928 (17)0.0493 (6)
H130.15720.25490.62330.059*
C140.0646 (4)0.2495 (3)0.4755 (2)0.0627 (7)
H140.17400.20250.45550.075*
C150.1164 (5)0.3030 (3)0.41866 (19)0.0620 (7)
H150.15090.30000.35220.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0461 (10)0.1040 (15)0.0467 (10)0.0214 (10)0.0048 (8)0.0042 (10)
O20.0359 (8)0.0525 (9)0.0283 (8)0.0014 (7)0.0069 (6)0.0064 (7)
O30.0288 (9)0.1025 (15)0.0434 (10)0.0074 (9)0.0005 (8)0.0023 (10)
O40.0265 (8)0.0978 (14)0.0411 (10)0.0010 (8)0.0002 (7)0.0091 (9)
O50.0347 (8)0.0574 (10)0.0255 (7)0.0007 (7)0.0022 (6)0.0091 (7)
O60.0402 (9)0.0808 (12)0.0365 (9)0.0071 (9)0.0014 (7)0.0060 (8)
N10.0430 (12)0.0484 (12)0.0347 (11)0.0006 (9)0.0044 (10)0.0043 (10)
N20.0628 (15)0.0514 (13)0.0322 (11)0.0127 (11)0.0017 (11)0.0087 (10)
C10.0528 (15)0.0543 (15)0.0553 (15)0.0115 (12)0.0205 (13)0.0114 (12)
C20.0762 (18)0.0518 (15)0.0353 (13)0.0120 (13)0.0126 (13)0.0055 (11)
C30.0584 (15)0.0551 (15)0.0319 (12)0.0056 (12)0.0011 (11)0.0072 (11)
C40.0384 (12)0.0402 (12)0.0308 (11)0.0007 (10)0.0020 (10)0.0097 (10)
C50.0418 (13)0.0459 (14)0.0302 (12)0.0002 (11)0.0006 (10)0.0108 (10)
C60.0473 (13)0.0354 (12)0.0342 (12)0.0019 (10)0.0115 (10)0.0059 (10)
C70.0252 (10)0.0341 (12)0.0272 (10)0.0024 (9)0.0013 (8)0.0074 (9)
C80.0346 (12)0.0519 (14)0.0337 (12)0.0041 (11)0.0034 (10)0.0085 (10)
C90.0369 (12)0.0462 (14)0.0374 (12)0.0084 (10)0.0041 (10)0.0091 (10)
C100.0409 (12)0.0418 (13)0.0289 (11)0.0027 (10)0.0045 (9)0.0082 (10)
C110.0398 (13)0.0446 (13)0.0278 (11)0.0070 (11)0.0012 (10)0.0019 (10)
C120.0474 (13)0.0402 (13)0.0266 (11)0.0095 (11)0.0035 (10)0.0040 (9)
C130.0588 (15)0.0451 (14)0.0427 (14)0.0015 (12)0.0094 (12)0.0093 (11)
C140.083 (2)0.0540 (17)0.0570 (17)0.0002 (14)0.0217 (15)0.0211 (14)
C150.103 (2)0.0519 (16)0.0357 (13)0.0220 (15)0.0165 (15)0.0180 (12)
Geometric parameters (Å, º) top
O1—C51.208 (2)C3—H3A0.9300
O2—C51.346 (2)C4—C51.440 (3)
O2—C61.442 (2)C6—C71.526 (3)
O3—C81.423 (2)C6—H6A0.9700
O3—H30.82 (3)C6—H6B0.9700
O4—C91.418 (2)C7—C101.519 (3)
O4—H40.87 (3)C7—C91.524 (3)
O5—C111.341 (2)C7—C81.528 (3)
O5—C101.445 (2)C8—H8A0.9700
O6—C111.225 (2)C8—H8B0.9700
N1—C11.346 (3)C9—H9A0.9700
N1—C41.371 (3)C9—H9B0.9700
N1—H10.82 (2)C10—H10A0.9700
N2—C151.347 (3)C10—H10B0.9700
N2—C121.373 (3)C11—C121.436 (3)
N2—H20.86 (2)C12—C131.364 (3)
C1—C21.365 (3)C13—C141.394 (3)
C1—H1A0.9300C13—H130.9300
C2—C31.384 (3)C14—C151.363 (3)
C2—H2A0.9300C14—H140.9300
C3—C41.373 (3)C15—H150.9300
C5—O2—C6118.39 (16)C9—C7—C8107.32 (16)
C8—O3—H3107 (2)C6—C7—C8110.68 (15)
C9—O4—H4107.1 (17)O3—C8—C7113.00 (18)
C11—O5—C10117.84 (16)O3—C8—H8A109.0
C1—N1—C4109.05 (19)C7—C8—H8A109.0
C1—N1—H1128.4 (15)O3—C8—H8B109.0
C4—N1—H1122.5 (15)C7—C8—H8B109.0
C15—N2—C12108.7 (2)H8A—C8—H8B107.8
C15—N2—H2128.8 (18)O4—C9—C7113.58 (17)
C12—N2—H2122.2 (18)O4—C9—H9A108.8
N1—C1—C2108.7 (2)C7—C9—H9A108.8
N1—C1—H1A125.6O4—C9—H9B108.8
C2—C1—H1A125.6C7—C9—H9B108.8
C1—C2—C3107.2 (2)H9A—C9—H9B107.7
C1—C2—H2A126.4O5—C10—C7111.36 (16)
C3—C2—H2A126.4O5—C10—H10A109.4
C4—C3—C2108.0 (2)C7—C10—H10A109.4
C4—C3—H3A126.0O5—C10—H10B109.4
C2—C3—H3A126.0C7—C10—H10B109.4
N1—C4—C3107.05 (19)H10A—C10—H10B108.0
N1—C4—C5123.65 (18)O6—C11—O5123.1 (2)
C3—C4—C5129.3 (2)O6—C11—C12125.29 (19)
O1—C5—O2122.98 (19)O5—C11—C12111.61 (19)
O1—C5—C4124.73 (19)C13—C12—N2107.6 (2)
O2—C5—C4112.29 (18)C13—C12—C11132.0 (2)
O2—C6—C7111.25 (16)N2—C12—C11120.4 (2)
O2—C6—H6A109.4C12—C13—C14107.8 (2)
C7—C6—H6A109.4C12—C13—H13126.1
O2—C6—H6B109.4C14—C13—H13126.1
C7—C6—H6B109.4C15—C14—C13107.1 (2)
H6A—C6—H6B108.0C15—C14—H14126.5
C10—C7—C9111.19 (15)C13—C14—H14126.5
C10—C7—C6105.22 (15)N2—C15—C14108.9 (2)
C9—C7—C6110.47 (16)N2—C15—H15125.6
C10—C7—C8112.00 (16)C14—C15—H15125.6
C4—N1—C1—C20.5 (3)C10—C7—C9—O458.0 (2)
N1—C1—C2—C30.6 (3)C6—C7—C9—O458.4 (2)
C1—C2—C3—C40.5 (3)C8—C7—C9—O4179.14 (15)
C1—N1—C4—C30.2 (2)C11—O5—C10—C7100.45 (19)
C1—N1—C4—C5178.1 (2)C9—C7—C10—O557.4 (2)
C2—C3—C4—N10.2 (3)C6—C7—C10—O5177.02 (15)
C2—C3—C4—C5178.4 (2)C8—C7—C10—O562.7 (2)
C6—O2—C5—O13.7 (3)C10—O5—C11—O64.4 (3)
C6—O2—C5—C4176.00 (16)C10—O5—C11—C12176.30 (16)
N1—C4—C5—O1170.5 (2)C15—N2—C12—C131.1 (2)
C3—C4—C5—O17.4 (4)C15—N2—C12—C11179.25 (19)
N1—C4—C5—O29.2 (3)O6—C11—C12—C13173.9 (2)
C3—C4—C5—O2172.9 (2)O5—C11—C12—C135.4 (3)
C5—O2—C6—C7112.97 (19)O6—C11—C12—N23.7 (3)
O2—C6—C7—C10166.22 (15)O5—C11—C12—N2176.99 (17)
O2—C6—C7—C973.7 (2)N2—C12—C13—C140.5 (2)
O2—C6—C7—C845.0 (2)C11—C12—C13—C14178.3 (2)
C10—C7—C8—O364.1 (2)C12—C13—C14—C150.4 (3)
C9—C7—C8—O3173.64 (16)C12—N2—C15—C141.4 (3)
C6—C7—C8—O353.0 (2)C13—C14—C15—N21.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O60.82 (3)2.20 (3)2.937 (2)150 (3)
O4—H4···O3i0.87 (3)1.92 (3)2.769 (2)166 (2)
N1—H1···O4ii0.82 (2)2.17 (2)2.989 (3)173 (2)
N2—H2···O6iii0.86 (2)2.12 (3)2.936 (3)160 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H18N2O6
Mr322.31
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.434 (2), 9.212 (3), 13.715 (4)
α, β, γ (°)73.202 (5), 85.533 (5), 89.330 (5)
V3)775.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.949, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3971, 2713, 1733
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.02
No. of reflections2713
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C51.208 (2)N1—C11.346 (3)
O2—C51.346 (2)N1—C41.371 (3)
O2—C61.442 (2)N1—H10.82 (2)
O3—H30.82 (3)N2—C151.347 (3)
O5—C111.341 (2)N2—C121.373 (3)
O5—C101.445 (2)N2—H20.86 (2)
O6—C111.225 (2)
C5—O2—C6118.39 (16)N1—C4—C5123.65 (18)
C8—O3—H3107 (2)O1—C5—O2122.98 (19)
C9—O4—H4107.1 (17)O1—C5—C4124.73 (19)
C11—O5—C10117.84 (16)O2—C5—C4112.29 (18)
C1—N1—C4109.05 (19)O6—C11—O5123.1 (2)
C1—N1—H1128.4 (15)O6—C11—C12125.29 (19)
C4—N1—H1122.5 (15)O5—C11—C12111.61 (19)
C15—N2—C12108.7 (2)C13—C12—N2107.6 (2)
C15—N2—H2128.8 (18)C13—C12—C11132.0 (2)
C12—N2—H2122.2 (18)N2—C12—C11120.4 (2)
N1—C4—C3107.05 (19)
C6—O2—C5—C4176.00 (16)C10—O5—C11—C12176.30 (16)
N1—C4—C5—O1170.5 (2)O6—C11—C12—C13173.9 (2)
C3—C4—C5—O17.4 (4)O5—C11—C12—C135.4 (3)
N1—C4—C5—O29.2 (3)O6—C11—C12—N23.7 (3)
C3—C4—C5—O2172.9 (2)O5—C11—C12—N2176.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O60.82 (3)2.20 (3)2.937 (2)150 (3)
O4—H4···O3i0.87 (3)1.92 (3)2.769 (2)166 (2)
N1—H1···O4ii0.82 (2)2.17 (2)2.989 (3)173 (2)
N2—H2···O6iii0.86 (2)2.12 (3)2.936 (3)160 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds