Download citation
Download citation
link to html
In the crystal structure of the title compound, C5H15AsO7P2·H2O, hydrogen-bonded sheets are formed which contain bis­phospho­nate(1-) groups and water mol­ecules alternating with trimethyl­arsonium groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680600184X/lh6574sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680600184X/lh6574Isup2.hkl
Contains datablock I

CCDC reference: 298491

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.092
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.53 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2001).

1-Hydroxy-1-phosphono-2-(trimethylarsonium-1-yl)ethanephosphonate monohydrate top
Crystal data top
C5H15AsO7P2·H2OF(000) = 696
Mr = 342.05Dx = 1.808 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 897 reflections
a = 7.171 (8) Åθ = 2.3–28.3°
b = 10.487 (12) ŵ = 2.98 mm1
c = 16.849 (19) ÅT = 193 K
β = 97.284 (16)°Tabular, colorless
V = 1257 (2) Å30.32 × 0.17 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3126 independent reflections
Radiation source: normal-focus sealed tube2265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
profile data from ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: integration
(XPREP in SHELXTL; Bruker, 2001)
h = 99
Tmin = 0.442, Tmax = 0.865k = 1314
11918 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.005
166 parametersΔρmax = 0.56 e Å3
6 restraintsΔρmin = 0.76 e Å3
Special details top

Experimental. One distinct cell was identified using SMART (Bruker, 2001). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2001) then corrected for absorption by integration using SHELXTL/XPREP (Bruker, 2001) before using SAINT/SADABS(Bruker, 2001) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods. Systematic conditions suggested the un??ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms O1, O2 and AS1; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.30346 (4)0.24382 (3)0.427167 (16)0.02341 (11)
P10.61083 (10)0.31476 (6)0.24827 (4)0.01909 (17)
P20.21705 (10)0.42944 (6)0.19458 (4)0.01724 (16)
O40.1714 (3)0.31903 (17)0.13327 (11)0.0231 (4)
H20.092 (4)0.266 (3)0.145 (2)0.035*
O50.3122 (3)0.53243 (16)0.15290 (11)0.0219 (4)
H30.286 (4)0.6108 (19)0.1618 (19)0.033*
O70.4148 (3)0.45757 (16)0.34016 (11)0.0202 (4)
H40.437 (4)0.530 (2)0.3250 (18)0.030*
O10.7019 (3)0.44102 (18)0.22643 (14)0.0288 (5)
H10.814 (3)0.439 (3)0.223 (2)0.043*
O80.9309 (3)0.14809 (19)0.14542 (13)0.0261 (5)
H170.945 (5)0.097 (3)0.1819 (16)0.039*
H160.823 (3)0.172 (3)0.150 (2)0.039*
O20.5835 (3)0.21801 (17)0.18300 (12)0.0237 (4)
O30.7309 (3)0.26290 (16)0.32491 (12)0.0242 (5)
O60.0477 (3)0.46968 (18)0.23345 (12)0.0245 (4)
C40.2263 (6)0.0752 (3)0.44994 (19)0.0409 (9)
H100.31470.01360.43190.061*
H110.10010.05940.42190.061*
H120.22440.06590.50770.061*
C10.3844 (4)0.3643 (2)0.27730 (15)0.0162 (5)
C20.2922 (4)0.2469 (2)0.31254 (16)0.0190 (6)
H50.35400.16900.29540.023*
H60.15850.24340.28910.023*
C50.1271 (5)0.3619 (3)0.45985 (19)0.0395 (8)
H130.00400.34790.42860.059*
H140.16940.44910.45100.059*
H150.11700.34970.51680.059*
C30.5451 (5)0.2703 (3)0.4861 (2)0.0403 (9)
H70.53460.26880.54350.061*
H80.59440.35310.47170.061*
H90.63060.20250.47340.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0333 (2)0.02086 (15)0.01615 (16)0.00157 (12)0.00345 (12)0.00139 (10)
P10.0181 (4)0.0160 (3)0.0232 (4)0.0019 (3)0.0029 (3)0.0016 (3)
P20.0180 (4)0.0160 (3)0.0173 (3)0.0005 (3)0.0007 (3)0.0006 (2)
O40.0287 (12)0.0205 (9)0.0201 (10)0.0063 (8)0.0029 (9)0.0022 (7)
O50.0267 (11)0.0155 (8)0.0235 (10)0.0002 (8)0.0032 (8)0.0008 (7)
O70.0267 (11)0.0147 (8)0.0186 (9)0.0038 (8)0.0012 (8)0.0014 (7)
O10.0145 (11)0.0219 (10)0.0510 (14)0.0011 (8)0.0075 (10)0.0106 (9)
O80.0230 (12)0.0238 (10)0.0326 (12)0.0013 (9)0.0076 (10)0.0023 (8)
O20.0277 (12)0.0229 (9)0.0208 (10)0.0063 (8)0.0045 (9)0.0020 (7)
O30.0225 (11)0.0203 (9)0.0278 (11)0.0039 (8)0.0048 (9)0.0022 (8)
O60.0185 (11)0.0274 (10)0.0274 (11)0.0012 (8)0.0023 (9)0.0023 (8)
C40.079 (3)0.0229 (15)0.0221 (15)0.0095 (16)0.0106 (17)0.0019 (12)
C10.0174 (14)0.0147 (11)0.0168 (12)0.0019 (10)0.0030 (11)0.0015 (9)
C20.0219 (15)0.0188 (12)0.0164 (13)0.0025 (10)0.0030 (11)0.0006 (9)
C50.053 (2)0.0381 (18)0.0301 (18)0.0092 (16)0.0172 (17)0.0009 (14)
C30.043 (2)0.055 (2)0.0206 (16)0.0042 (16)0.0066 (15)0.0034 (14)
Geometric parameters (Å, º) top
As1—C51.901 (4)O1—H10.814 (18)
As1—C31.905 (4)O8—H170.810 (18)
As1—C41.906 (3)O8—H160.829 (18)
As1—C21.923 (3)C4—H100.9800
P1—O21.491 (2)C4—H110.9800
P1—O11.541 (2)C4—H120.9800
P1—O31.556 (2)C1—C21.551 (4)
P1—C11.830 (3)C2—H50.9900
P2—O51.499 (2)C2—H60.9900
P2—O61.511 (3)C5—H130.9800
P2—O41.559 (2)C5—H140.9800
P2—C11.851 (3)C5—H150.9800
O4—H20.837 (18)C3—H70.9800
O5—H30.861 (17)C3—H80.9800
O7—C11.438 (3)C3—H90.9800
O7—H40.827 (17)
C5—As1—C3110.41 (17)H10—C4—H12109.5
C5—As1—C4108.98 (17)H11—C4—H12109.5
C3—As1—C4107.36 (16)O7—C1—C2106.9 (2)
C5—As1—C2109.57 (13)O7—C1—P1109.48 (18)
C3—As1—C2116.14 (15)C2—C1—P1108.23 (18)
C4—As1—C2103.98 (12)O7—C1—P2109.10 (17)
O2—P1—O1115.38 (14)C2—C1—P2108.30 (19)
O2—P1—O3112.42 (13)P1—C1—P2114.60 (15)
O1—P1—O3106.95 (12)C1—C2—As1115.61 (17)
O2—P1—C1110.62 (12)C1—C2—H5108.4
O1—P1—C1103.72 (13)As1—C2—H5108.4
O3—P1—C1107.08 (13)C1—C2—H6108.4
O5—P2—O6116.14 (13)As1—C2—H6108.4
O5—P2—O4107.14 (13)H5—C2—H6107.4
O6—P2—O4112.45 (12)As1—C5—H13109.5
O5—P2—C1109.17 (13)As1—C5—H14109.5
O6—P2—C1104.87 (14)H13—C5—H14109.5
O4—P2—C1106.66 (12)As1—C5—H15109.5
P2—O4—H2115 (3)H13—C5—H15109.5
P2—O5—H3119 (2)H14—C5—H15109.5
C1—O7—H4115 (2)As1—C3—H7109.5
P1—O1—H1117 (3)As1—C3—H8109.5
H17—O8—H1699 (4)H7—C3—H8109.5
As1—C4—H10109.5As1—C3—H9109.5
As1—C4—H11109.5H7—C3—H9109.5
H10—C4—H11109.5H8—C3—H9109.5
As1—C4—H12109.5
O2—P1—C1—O7179.95 (15)O5—P2—C1—C2172.86 (16)
O1—P1—C1—O755.7 (2)O6—P2—C1—C262.1 (2)
O3—P1—C1—O757.23 (19)O4—P2—C1—C257.4 (2)
O2—P1—C1—C263.9 (2)O5—P2—C1—P151.94 (17)
O1—P1—C1—C2171.79 (17)O6—P2—C1—P1177.03 (12)
O3—P1—C1—C258.89 (19)O4—P2—C1—P163.51 (16)
O2—P1—C1—P257.02 (17)O7—C1—C2—As114.1 (3)
O1—P1—C1—P267.26 (16)P1—C1—C2—As1103.68 (18)
O3—P1—C1—P2179.84 (12)P2—C1—C2—As1131.53 (16)
O5—P2—C1—O771.2 (2)C5—As1—C2—C175.0 (2)
O6—P2—C1—O753.90 (19)C3—As1—C2—C150.9 (2)
O4—P2—C1—O7173.37 (17)C4—As1—C2—C1168.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.81 (2)1.69 (2)2.486 (4)165 (4)
O8—H17···O6ii0.81 (2)1.95 (2)2.759 (4)174 (4)
O7—H4···O2iii0.83 (2)1.98 (2)2.759 (4)157 (3)
O5—H3···O3iii0.86 (2)1.62 (2)2.471 (4)171 (3)
O8—H16···O20.83 (2)1.93 (2)2.747 (4)169 (4)
O4—H2···O8iv0.84 (2)1.69 (2)2.514 (3)166 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds