metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­(4-chloro-3-formyl­benzene­sulfonato)calcium(II) 4-chloro-3-formylbenzene­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: dawn.wallace.100@strath.ac.uk

(Received 16 November 2005; accepted 12 January 2006; online 20 January 2006)

The supramolecular structure of the title mol­ecule, [Ca(C7H4ClO4S)(H2O)6](C7H4ClO4S)·H2O, contains alternating organic and inorganic layers along the b direction. The sulfonate group on one of the aryl units is coordinated to Ca, while the other does not form any inter­action with a Ca atom.

Comment

Previously, the study of supramolecular systems has focused largely on transition metal fragments. However, group II metal salts are also routinely used as building blocks and there has consequently been an increased inter­est in their structures. Recently, our work (Kennedy et al., 2004[Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606-4615.]) and that of Shimizu & Côté (2003[Shimizu, G. K. H. & Côté, A. P. (2003). Chem. Eur. J. 9, 5361-5370.]) has focused on the structures of group II metal salts of aryl­sulfonates. In particular, we have endeavoured to rationalize the nature of the metal–sulfonate bond. This motif is diverse, and is present in many compounds, such as azo colourants, that are of inter­est to materials chemists.

[Scheme 1]

The aforementioned work has shown that these species form layered structures with alternate organic and inorganic layers. The magnesium salts of the aryl­sulfonates typically exist as solvent-separated ion-pairs of the type [Mg(OH2)6][SO3R]. As group II is descended, the number and importance of the M—OSO2 bonds increases. The compound reported here, (I)[link], fits well with both of these trends.

The supramolecular structure of (I)[link] contains alternate organic and inorganic layers along the b direction. This structure demonstrates the ability of Ca to form M—OSO2 bonds but only in the minimum possible mode of one bond (μ1,η1 mode). In this structure, Ca is coordinated by the sulfonate group via an O atom and is also solvated by six water mol­ecules, giving it a coordination number of 7. Generally, Ca—OSO2 bonds are disfavoured, compared with Sr and Ba, and this is demonstrated well in (I)[link] by the presence of one aryl unit that is not coordinated to Ca. The coordination of the sulfonate O atom to Ca seems to have little effect on the S—O bond length [1.459 (2) Å]. In comparison, the S—O bond lengths of the uncoordinated aryl unit are in the range 1.447–1.462 (2) Å.

Hydrogen bonding (Table 2[link]) is a dominant feature of the crystal structure of (I)[link], with all the H atoms in the water mol­ecules and the sulfonate O atoms being hydrogen bonded. The uncoordinated water mol­ecule acts as both an H-atom donor and acceptor. However, the coordinated water mol­ecules are only donors. ππ stacking in the structure is relatively minor, with the closest distance being 3.353 (4) Å for C2⋯C3i [symmetry code: (i) [x, -y, z+{1 \over 2}]].

[Figure 1]
Figure 1
A view of (I)[link], with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

Great care was taken during the synthesis. The reaction was carried out within a three-sided Perspex screen in a fume hood and suitable face, eye and body protection was worn. Fuming sulfuric acid (40 ml, 30% SO3) was cooled in an ice bath, upon which the acid solidified. 2-Chloro­benzaldehyde (5 ml, 44.43 mmol) was added over a period of 2 h, whereupon the acid melted and the solution turned dark brown. Throughout the addition the temperature was maintained below 298 K. The reaction was heated slowly to 358 K and held at that temperature for 45 min. The mixture was kept below 398 K to prevent oxidation of the aldehyde to the carboxylic acid. The solution was then cooled and poured carefully on to ice, after which it was neutralized with calcium carbonate. The mixture was then filtered to remove the resulting calcium sulfate. The filtrate volume was reduced from 600 to 100 ml and the solution was left to stand at room temperature. The product crystallized slowly. Crystals of (I)[link] suitable for X-ray analysis were obtained. These were collected by filtration, washed with diethyl ether and air-dried (yield 72%). Analysis calculated for C14H8CaCl2O8S2·2H2O: C 32.62, H 2.35, Cl 13.77, S 12.44%; found: C 32.26, H 1.51, Cl 13.34, S 11.67%; the compound is prone to loss of water, hence the disparity in the H analysis. MS (LC direct): m/e 219 [C7H4ClO4S].

Crystal data
  • [Ca(C7H4ClO4S)(H2O)6](C7H4ClO4S)·H2O

  • Mr = 605.52

  • Monoclinic, P c

  • a = 6.4750 (2) Å

  • b = 24.7258 (7) Å

  • c = 7.3573 (2) Å

  • β = 93.2126 (2)°

  • V = 1176.05 (6) Å3

  • Z = 2

  • Dx = 1.71 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5190 reflections

  • θ = 1.6–27.5°

  • μ = 0.74 mm−1

  • T = 123 (2) K

  • Plate, colourless

  • 0.40 × 0.38 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 5205 measured reflections

  • 5190 independent reflections

  • 4417 reflections with I > 2σ(I)

  • Rint = 0.016

  • θmax = 27.5°

  • h = −8 → 8

  • k = −31 → 32

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.067

  • S = 1.05

  • 5190 reflections

  • 364 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0223P)2 + 0.6115P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2483 Friedel pairs

  • Flack parameter: 0.44 (3)

Table 1
Selected geometric parameters (Å, °)

Ca1—O3W 2.366 (2)
Ca1—O4W 2.367 (2)
Ca1—O1W 2.371 (2)
Ca1—O8 2.389 (2)
Ca1—O6W 2.389 (2)
Ca1—O2W 2.435 (2)
Ca1—O5W 2.444 (2)
O1—C1 1.219 (4)
O5—C8 1.224 (4)
O3W—Ca1—O4W 77.76 (8)
O3W—Ca1—O1W 93.04 (8)
O4W—Ca1—O1W 156.11 (8)
O3W—Ca1—O8 155.56 (8)
O4W—Ca1—O8 95.37 (8)
O1W—Ca1—O8 83.91 (8)
O3W—Ca1—O6W 81.63 (8)
O4W—Ca1—O6W 121.67 (9)
O1W—Ca1—O6W 77.80 (8)
O8—Ca1—O6W 121.00 (8)
O3W—Ca1—O2W 81.49 (8)
O4W—Ca1—O2W 77.59 (8)
O1W—Ca1—O2W 79.27 (8)
O8—Ca1—O2W 74.11 (7)
O6W—Ca1—O2W 150.61 (8)
O3W—Ca1—O5W 120.98 (8)
O4W—Ca1—O5W 73.89 (8)
O1W—Ca1—O5W 128.77 (8)
O8—Ca1—O5W 78.24 (7)
O6W—Ca1—O5W 71.59 (7)
O2W—Ca1—O5W 137.77 (8)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O5i 0.84 (3) 2.08 (3) 2.909 (3) 169 (3)
O1W—H2W⋯O7Wii 0.83 (3) 2.00 (3) 2.806 (3) 161 (4)
O2W—H3W⋯O4iii 0.83 (3) 1.99 (3) 2.818 (3) 170 (4)
O2W—H4W⋯O6iii 0.84 (3) 2.07 (3) 2.896 (3) 170 (4)
O3W—H5W⋯O2iii 0.84 (3) 2.01 (3) 2.842 (3) 172 (4)
O3W—H6W⋯O4ii 0.83 (3) 1.97 (3) 2.792 (3) 172 (4)
O4W—H7W⋯O3 0.84 (3) 1.93 (4) 2.739 (3) 164 (5)
O4W—H8W⋯O1iv 0.83 (3) 2.10 (3) 2.863 (3) 152 (3)
O5W—H9W⋯O2 0.84 (3) 2.54 (3) 3.296 (3) 151 (3)
O5W—H9W⋯O3 0.84 (3) 2.54 (3) 3.231 (3) 141 (3)
O5W—H10W⋯O7Wv 0.84 (3) 1.95 (3) 2.779 (3) 167 (4)
O6W—H11W⋯O3v 0.84 (3) 2.08 (3) 2.913 (3) 175 (4)
O6W—H12W⋯O2Wv 0.84 (3) 2.34 (3) 3.104 (3) 153 (4)
O6W—H12W⋯O8v 0.84 (3) 2.49 (3) 3.024 (3) 123 (3)
O7W—H13W⋯O7vi 0.84 (3) 1.88 (3) 2.703 (3) 168 (3)
O7W—H14W⋯O6 0.83 (3) 2.01 (3) 2.840 (3) 173 (4)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x+1, y, z-1; (iii) x, y, z-1; (iv) [x, -y, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) x-1, y, z.

All H atoms were found in a difference Fourier synthesis. Water H atoms were refined isotropically with restraints of O—H = 0.84 (1) and H⋯H = 1.33 (2) Å. Carbon-bound H atoms were constrained to fit a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The structure was refined as an inversion twin.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Hexaaqua(4-chloro-3-formylbenzenesulfonato)calcium(II) 4-chloro-3-formylbenzenesulfonate monohydrate top
Crystal data top
[Ca(C7H4ClO4S)(H2O)6](C7H4ClO4S)·H2OF(000) = 624
Mr = 605.52Dx = 1.71 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 6.4750 (2) ÅCell parameters from 5190 reflections
b = 24.7258 (7) Åθ = 1.6–27.5°
c = 7.3573 (2) ŵ = 0.74 mm1
β = 93.2126 (2)°T = 123 K
V = 1176.05 (6) Å3Plate, colourless
Z = 20.40 × 0.38 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.016
φ and ω scansθmax = 27.5°, θmin = 1.7°
5205 measured reflectionsh = 88
5190 independent reflectionsk = 3132
4417 reflections with I > 2σ(I)l = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.6115P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5190 reflectionsΔρmax = 0.31 e Å3
364 parametersΔρmin = 0.36 e Å3
23 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.76342 (9)0.25273 (2)0.20523 (8)0.01176 (12)
Cl10.16585 (12)0.04599 (3)0.02303 (10)0.02082 (18)
Cl20.01852 (11)0.55155 (3)0.14050 (10)0.02012 (17)
S10.36674 (10)0.15281 (3)0.29139 (9)0.01278 (15)
S20.56011 (10)0.35085 (3)0.09223 (9)0.01209 (15)
O10.4387 (3)0.06404 (9)0.2873 (3)0.0225 (5)
O20.5776 (3)0.13555 (9)0.3338 (3)0.0234 (5)
O1W0.8627 (4)0.33185 (9)0.3602 (3)0.0197 (5)
O30.3528 (3)0.19324 (8)0.1474 (3)0.0229 (5)
O2W0.4656 (3)0.26500 (9)0.4183 (3)0.0191 (5)
O40.2627 (3)0.17060 (8)0.4522 (3)0.0192 (5)
O3W0.8666 (3)0.19486 (10)0.4397 (3)0.0237 (5)
O50.6284 (3)0.56773 (8)0.1214 (3)0.0204 (5)
O4W0.5664 (4)0.17392 (9)0.1570 (3)0.0241 (5)
O60.4699 (3)0.33068 (8)0.2560 (3)0.0186 (5)
O5W0.8296 (3)0.22876 (9)0.1150 (3)0.0183 (5)
O70.7713 (3)0.36970 (8)0.1238 (3)0.0218 (5)
O6W1.1283 (3)0.25531 (10)0.1363 (3)0.0215 (5)
O7W0.0494 (3)0.30736 (9)0.3146 (3)0.0190 (5)
O80.5360 (3)0.31280 (8)0.0591 (3)0.0188 (5)
C10.2698 (5)0.05589 (12)0.2105 (4)0.0184 (7)
H10.18900.08610.16980.022*
C20.1857 (4)0.00085 (12)0.1781 (4)0.0138 (6)
C30.0081 (4)0.00810 (12)0.0907 (4)0.0156 (6)
C40.0839 (5)0.06004 (13)0.0554 (4)0.0162 (7)
H40.21430.06530.00800.019*
C50.0350 (4)0.10393 (12)0.1146 (4)0.0167 (6)
H50.01460.13960.09290.020*
C60.2275 (4)0.09581 (11)0.2061 (4)0.0126 (6)
C70.3037 (5)0.04397 (12)0.2350 (4)0.0139 (6)
H70.43670.03890.29370.017*
C80.4585 (5)0.56007 (12)0.0443 (4)0.0175 (7)
H80.37790.59060.00640.021*
C90.3727 (4)0.50526 (11)0.0074 (4)0.0127 (6)
C100.1751 (4)0.49700 (12)0.0759 (4)0.0142 (6)
C110.0973 (5)0.44586 (12)0.1119 (4)0.0144 (6)
H110.03620.44140.17020.017*
C120.2172 (4)0.40104 (12)0.0617 (4)0.0153 (6)
H120.16600.36560.08550.018*
C130.4126 (4)0.40844 (12)0.0236 (4)0.0107 (6)
C140.4905 (5)0.45962 (12)0.0565 (4)0.0126 (6)
H140.62510.46390.11300.015*
H1W0.785 (4)0.3587 (9)0.377 (4)0.032 (11)*
H2W0.937 (5)0.3305 (16)0.449 (4)0.061 (15)*
H3W0.392 (6)0.2392 (11)0.455 (5)0.064 (15)*
H4W0.481 (7)0.2854 (13)0.507 (4)0.057 (14)*
H5W0.777 (4)0.1763 (13)0.497 (4)0.042 (12)*
H6W0.979 (3)0.1871 (16)0.482 (5)0.049 (13)*
H7W0.505 (7)0.1733 (18)0.060 (4)0.082 (18)*
H8W0.530 (5)0.1456 (9)0.211 (4)0.037 (11)*
H9W0.737 (4)0.2152 (13)0.175 (4)0.037 (11)*
H10W0.897 (5)0.2488 (14)0.189 (4)0.049 (13)*
H11W1.189 (5)0.2386 (14)0.050 (3)0.044 (12)*
H12W1.220 (4)0.2687 (15)0.198 (4)0.049 (13)*
H13W0.023 (4)0.3278 (12)0.246 (4)0.031 (10)*
H14W0.170 (2)0.3172 (14)0.298 (5)0.037 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0109 (2)0.0112 (3)0.0131 (2)0.0004 (2)0.0001 (2)0.0004 (2)
Cl10.0199 (4)0.0190 (4)0.0233 (4)0.0080 (3)0.0011 (3)0.0040 (3)
Cl20.0200 (4)0.0176 (4)0.0226 (4)0.0073 (3)0.0007 (3)0.0035 (3)
S10.0117 (3)0.0109 (4)0.0157 (4)0.0012 (3)0.0008 (3)0.0013 (3)
S20.0114 (3)0.0101 (3)0.0146 (3)0.0006 (3)0.0006 (3)0.0008 (3)
O10.0236 (12)0.0169 (12)0.0267 (12)0.0042 (10)0.0013 (10)0.0024 (10)
O20.0106 (10)0.0211 (12)0.0376 (13)0.0003 (9)0.0053 (9)0.0100 (10)
O1W0.0215 (12)0.0150 (11)0.0229 (12)0.0018 (10)0.0041 (10)0.0048 (10)
O30.0342 (13)0.0132 (11)0.0214 (12)0.0061 (10)0.0020 (10)0.0051 (9)
O2W0.0226 (12)0.0152 (12)0.0187 (11)0.0034 (10)0.0064 (9)0.0003 (10)
O40.0169 (11)0.0195 (12)0.0215 (11)0.0048 (9)0.0054 (9)0.0077 (9)
O3W0.0150 (12)0.0301 (13)0.0263 (13)0.0014 (11)0.0041 (10)0.0137 (10)
O50.0209 (12)0.0160 (12)0.0241 (12)0.0024 (9)0.0004 (9)0.0021 (9)
O4W0.0322 (13)0.0166 (12)0.0237 (13)0.0124 (10)0.0038 (11)0.0027 (10)
O60.0201 (11)0.0175 (11)0.0183 (11)0.0020 (9)0.0016 (9)0.0054 (9)
O5W0.0185 (12)0.0200 (12)0.0165 (10)0.0042 (10)0.0030 (10)0.0016 (10)
O70.0110 (10)0.0170 (11)0.0365 (13)0.0024 (9)0.0052 (9)0.0035 (10)
O6W0.0129 (10)0.0282 (13)0.0231 (12)0.0008 (10)0.0004 (9)0.0067 (11)
O7W0.0163 (12)0.0202 (12)0.0201 (11)0.0014 (10)0.0014 (10)0.0031 (9)
O80.0211 (11)0.0162 (11)0.0190 (11)0.0053 (9)0.0000 (9)0.0054 (9)
C10.0237 (17)0.0135 (16)0.0184 (15)0.0002 (13)0.0045 (13)0.0022 (13)
C20.0157 (14)0.0154 (15)0.0101 (13)0.0006 (12)0.0003 (11)0.0012 (12)
C30.0162 (15)0.0168 (16)0.0139 (14)0.0076 (12)0.0028 (12)0.0055 (12)
C40.0129 (15)0.0189 (17)0.0164 (15)0.0011 (12)0.0030 (12)0.0024 (12)
C50.0193 (16)0.0129 (15)0.0176 (15)0.0030 (13)0.0013 (13)0.0004 (12)
C60.0133 (15)0.0114 (15)0.0131 (14)0.0047 (12)0.0016 (12)0.0025 (12)
C70.0132 (15)0.0184 (16)0.0104 (14)0.0016 (13)0.0020 (11)0.0027 (12)
C80.0231 (17)0.0130 (15)0.0166 (15)0.0011 (13)0.0028 (13)0.0023 (12)
C90.0177 (15)0.0098 (14)0.0108 (14)0.0003 (12)0.0019 (12)0.0006 (11)
C100.0159 (15)0.0151 (15)0.0119 (14)0.0055 (12)0.0020 (12)0.0049 (12)
C110.0098 (14)0.0180 (16)0.0151 (15)0.0008 (12)0.0017 (11)0.0015 (12)
C120.0173 (15)0.0122 (15)0.0163 (14)0.0038 (12)0.0003 (12)0.0013 (12)
C130.0113 (13)0.0090 (14)0.0119 (13)0.0002 (11)0.0019 (11)0.0013 (11)
C140.0124 (14)0.0147 (15)0.0109 (14)0.0001 (12)0.0015 (11)0.0000 (12)
Geometric parameters (Å, º) top
Ca1—O3W2.366 (2)O5W—H10W0.84 (3)
Ca1—O4W2.367 (2)O6W—H11W0.84 (3)
Ca1—O1W2.371 (2)O6W—H12W0.84 (3)
Ca1—O82.389 (2)O7W—H13W0.84 (3)
Ca1—O6W2.389 (2)O7W—H14W0.83 (3)
Ca1—O2W2.435 (2)C1—C21.480 (4)
Ca1—O5W2.444 (2)C1—H10.9500
Cl1—C31.739 (3)C2—C31.395 (4)
Cl2—C101.738 (3)C2—C71.397 (4)
S1—O21.448 (2)C3—C41.394 (4)
S1—O31.456 (2)C4—C51.387 (4)
S1—O41.462 (2)C4—H40.9500
S1—C61.769 (3)C5—C61.397 (4)
S2—O71.451 (2)C5—H50.9500
S2—O61.456 (2)C6—C71.386 (4)
S2—O81.459 (2)C7—H70.9500
S2—C131.772 (3)C8—C91.484 (4)
O1—C11.219 (4)C8—H80.9500
O1W—H1W0.84 (3)C9—C141.398 (4)
O1W—H2W0.83 (3)C9—C101.403 (4)
O2W—H3W0.83 (3)C10—C111.381 (4)
O2W—H4W0.84 (3)C11—C121.391 (4)
O3W—H5W0.84 (3)C11—H110.9500
O3W—H6W0.83 (3)C12—C131.392 (4)
O5—C81.224 (4)C12—H120.9500
O4W—H7W0.84 (3)C13—C141.379 (4)
O4W—H8W0.83 (3)C14—H140.9500
O5W—H9W0.84 (3)
O3W—Ca1—O4W77.76 (8)Ca1—O6W—H11W125 (2)
O3W—Ca1—O1W93.04 (8)Ca1—O6W—H12W128 (2)
O4W—Ca1—O1W156.11 (8)H11W—O6W—H12W107 (2)
O3W—Ca1—O8155.56 (8)H13W—O7W—H14W103 (2)
O4W—Ca1—O895.37 (8)S2—O8—Ca1134.59 (12)
O1W—Ca1—O883.91 (8)O1—C1—C2122.6 (3)
O3W—Ca1—O6W81.63 (8)O1—C1—H1118.7
O4W—Ca1—O6W121.67 (9)C2—C1—H1118.7
O1W—Ca1—O6W77.80 (8)C3—C2—C7118.3 (3)
O8—Ca1—O6W121.00 (8)C3—C2—C1122.2 (3)
O3W—Ca1—O2W81.49 (8)C7—C2—C1119.4 (3)
O4W—Ca1—O2W77.59 (8)C4—C3—C2122.0 (3)
O1W—Ca1—O2W79.27 (8)C4—C3—Cl1117.4 (2)
O8—Ca1—O2W74.11 (7)C2—C3—Cl1120.6 (2)
O6W—Ca1—O2W150.61 (8)C5—C4—C3118.6 (3)
O3W—Ca1—O5W120.98 (8)C5—C4—H4120.7
O4W—Ca1—O5W73.89 (8)C3—C4—H4120.7
O1W—Ca1—O5W128.77 (8)C4—C5—C6120.2 (3)
O8—Ca1—O5W78.24 (7)C4—C5—H5119.9
O6W—Ca1—O5W71.59 (7)C6—C5—H5119.9
O2W—Ca1—O5W137.77 (8)C7—C6—C5120.5 (3)
O2—S1—O3112.25 (14)C7—C6—S1120.8 (2)
O2—S1—O4112.70 (13)C5—C6—S1118.7 (2)
O3—S1—O4111.70 (13)C6—C7—C2120.3 (3)
O2—S1—C6107.31 (13)C6—C7—H7119.9
O3—S1—C6106.22 (13)C2—C7—H7119.9
O4—S1—C6106.13 (13)O5—C8—C9122.9 (3)
O7—S2—O6113.33 (13)O5—C8—H8118.5
O7—S2—O8112.86 (13)C9—C8—H8118.5
O6—S2—O8112.33 (13)C14—C9—C10117.8 (3)
O7—S2—C13106.00 (13)C14—C9—C8119.8 (3)
O6—S2—C13106.02 (13)C10—C9—C8122.4 (3)
O8—S2—C13105.52 (12)C11—C10—C9122.1 (3)
Ca1—O1W—H1W123 (2)C11—C10—Cl2117.2 (2)
Ca1—O1W—H2W122 (3)C9—C10—Cl2120.7 (2)
H1W—O1W—H2W107 (2)C10—C11—C12119.1 (3)
Ca1—O2W—H3W122 (3)C10—C11—H11120.4
Ca1—O2W—H4W117 (3)C12—C11—H11120.4
H3W—O2W—H4W107 (2)C11—C12—C13119.6 (3)
Ca1—O3W—H5W119 (2)C11—C12—H12120.2
Ca1—O3W—H6W135 (2)C13—C12—H12120.2
H5W—O3W—H6W107 (2)C14—C13—C12120.9 (3)
Ca1—O4W—H7W116 (3)C14—C13—S2120.1 (2)
Ca1—O4W—H8W139 (2)C12—C13—S2119.0 (2)
H7W—O4W—H8W105 (2)C13—C14—C9120.4 (3)
Ca1—O5W—H9W121 (2)C13—C14—H14119.8
Ca1—O5W—H10W123 (3)C9—C14—H14119.8
H9W—O5W—H10W105 (2)
O7—S2—O8—Ca123.9 (2)C5—C6—C7—C22.1 (4)
O6—S2—O8—Ca1105.74 (17)S1—C6—C7—C2175.5 (2)
C13—S2—O8—Ca1139.19 (16)C3—C2—C7—C60.6 (4)
O3W—Ca1—O8—S2164.94 (17)C1—C2—C7—C6179.9 (3)
O4W—Ca1—O8—S2122.98 (17)O5—C8—C9—C142.0 (4)
O1W—Ca1—O8—S281.02 (17)O5—C8—C9—C10177.9 (3)
O6W—Ca1—O8—S29.2 (2)C14—C9—C10—C110.9 (4)
O2W—Ca1—O8—S2161.56 (19)C8—C9—C10—C11179.1 (3)
O5W—Ca1—O8—S250.70 (17)C14—C9—C10—Cl2179.8 (2)
O1—C1—C2—C3179.8 (3)C8—C9—C10—Cl20.1 (4)
O1—C1—C2—C70.8 (5)C9—C10—C11—C121.0 (4)
C7—C2—C3—C41.5 (4)Cl2—C10—C11—C12179.7 (2)
C1—C2—C3—C4177.9 (3)C10—C11—C12—C130.0 (4)
C7—C2—C3—Cl1178.0 (2)C11—C12—C13—C141.0 (4)
C1—C2—C3—Cl12.6 (4)C11—C12—C13—S2178.3 (2)
C2—C3—C4—C52.1 (4)O7—S2—C13—C1417.5 (3)
Cl1—C3—C4—C5177.4 (2)O6—S2—C13—C14103.2 (2)
C3—C4—C5—C60.6 (4)O8—S2—C13—C14137.4 (2)
C4—C5—C6—C71.5 (4)O7—S2—C13—C12163.2 (2)
C4—C5—C6—S1176.2 (2)O6—S2—C13—C1276.1 (2)
O2—S1—C6—C717.5 (3)O8—S2—C13—C1243.3 (3)
O3—S1—C6—C7137.8 (2)C12—C13—C14—C91.1 (4)
O4—S1—C6—C7103.2 (3)S2—C13—C14—C9178.2 (2)
O2—S1—C6—C5164.8 (2)C10—C9—C14—C130.1 (4)
O3—S1—C6—C544.5 (3)C8—C9—C14—C13179.8 (3)
O4—S1—C6—C574.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5i0.84 (3)2.08 (3)2.909 (3)169 (3)
O1W—H2W···O7Wii0.83 (3)2.00 (3)2.806 (3)161 (4)
O2W—H3W···O4iii0.83 (3)1.99 (3)2.818 (3)170 (4)
O2W—H4W···O6iii0.84 (3)2.07 (3)2.896 (3)170 (4)
O3W—H5W···O2iii0.84 (3)2.01 (3)2.842 (3)172 (4)
O3W—H6W···O4ii0.83 (3)1.97 (3)2.792 (3)172 (4)
O4W—H7W···O30.84 (3)1.93 (4)2.739 (3)164 (5)
O4W—H8W···O1iv0.83 (3)2.10 (3)2.863 (3)152 (3)
O5W—H9W···O20.84 (3)2.54 (3)3.296 (3)151 (3)
O5W—H9W···O30.84 (3)2.54 (3)3.231 (3)141 (3)
O5W—H10W···O7Wv0.84 (3)1.95 (3)2.779 (3)167 (4)
O6W—H11W···O3v0.84 (3)2.08 (3)2.913 (3)175 (4)
O6W—H12W···O2Wv0.84 (3)2.34 (3)3.104 (3)153 (4)
O6W—H12W···O8v0.84 (3)2.49 (3)3.024 (3)123 (3)
O7W—H13W···O7vi0.84 (3)1.88 (3)2.703 (3)168 (3)
O7W—H14W···O60.83 (3)2.01 (3)2.840 (3)173 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x, y, z1/2; (v) x+1, y, z; (vi) x1, y, z.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606–4615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShimizu, G. K. H. & Côté, A. P. (2003). Chem. Eur. J. 9, 5361–5370.  Web of Science CSD CrossRef PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds