organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di-O-acetyl-3-C-methyl-D-lyxono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Central Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cCMS Chemicals, 9 Milton Park, Abingdon, Oxfordshire OX14 4RR, England
*Correspondence e-mail: richard.bream@pmb.ox.ac.uk

(Received 25 January 2006; accepted 3 February 2006; online 8 February 2006)

The structures of both lactones derived from the Kiliani ascension of 2-C-methyl-D-threose were defined by the crystal structure of the title compound, C10H14O7. The structure consists of hydrogen-bonded ribbons of mol­ecules.

Comment

The Kiliani reaction of ketoses with cyanide, followed by acetonation, has provided a simple and environmentally friendly procedure for the generation of a set of carbohydrate scaffolds with a branched hydroxy­methyl group at C-2 (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]). Branched sugar lactones bearing a C-2 methyl group may be accessed either by a Kiliani reaction on 1-deoxy­ketoses or by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2006[Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.]). X-ray crystallographic analysis has been crucial in establishing the structures of the products in these reactions (Punzo et al., 2006[Punzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98-o100.]; Watkin et al., 2005[Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302-o3303.]; Harding et al., 2005[Harding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472-o1474.]). Although these syntheses provide convenient access to C-2 carbon-branched carbohydrates, there are very few reports of sugars with a carbon branch at C-3; a 3-C-methyl­pentonolactone of unknown stereochemistry has been isolated from cigarette smoke (Schumacher et al., 1977[Schumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food. Chem. 25, 310-320.]) and 3-C-methyl-D-mannose is one of the components of the tri­s­accharide repeating unit of the polysaccharide from Helicobacter Pylori (Kwon et al., 2004[Kwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901-3904.]).

[Scheme 1]

3-C-Methyl aldonolactones should be accessible through a Kiliani reaction on a branched 2-C-methyl aldose. Reaction of 2-C-methyl-D-threose (1) with aqueous sodium cyanide afforded an inseparable mixture of the C-3-methyl branched lactones (2) and (5); the mixture was treated with an excess of acetic anhydride in pyridine to give a separable mixture of two triacetates (3) and (6) together with a crystalline diacetate (4) (Soengas & Fleet, 2006[Soengas, R. & Fleet, G. W. J. (2006). Tetrahedron Lett. In preparation.]). Determination of the relative stereochemistry of the diacetate (4) as a lyxono-1,4-lactone by X-ray crystallographic analysis (Fig. 1[link]) allowed unambiguous structural assigments of both the triacetates (3) and (6), and thus of the C-3 branched lyxono- (2) and xylono- (5) lactones. The use of 2-C-methyl-D-threose (1) as the starting material in the synthesis defines the absolute configuration of (4). Both C-2 and C-3 branched sugars are likely to increase significantly the range of carbohydrate chirons (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]) available for the efficient synthesis of complex homochiral targets (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]) and also to provide material for the first time for the study of inter­actions of such unnatural monosaccharides with biological receptors.

The crystal structure consists of layers of mol­ecules lying perpendicular to the c axis (Fig. 2[link]). Within each layer are inter­locking zigzag ribbons of hydrogen-bonded mol­ecules (Fig. 3[link]).

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
A b-axis projection showing layers of mol­ecules. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
A c-axis projection of one layer of mol­ecules, showing the hydrogen-bonded (dashed lines) ribbons lying parallel to b.

Experimental

The material was prepared (Soengas & Fleet, 2006[Soengas, R. & Fleet, G. W. J. (2006). Tetrahedron Lett. In preparation.]) using a Kiliani reaction. The diacetate (4) was crystallized from chloro­form; m.p. 521–523 K, [α]D23 +60.0 (c, 1.7 in acetone).

Crystal data
  • C10H14O7

  • Mr = 246.22

  • Orthorhombic, P 21 21 21

  • a = 8.8524 (1) Å

  • b = 10.0821 (2) Å

  • c = 13.1198 (2) Å

  • V = 1170.95 (3) Å3

  • Z = 4

  • Dx = 1.397 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1560 reflections

  • θ = 5–27°

  • μ = 0.12 mm−1

  • T = 150 K

  • Plate, colourless

  • 0.20 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.869, Tmax = 0.990

  • 2688 measured reflections

  • 1545 independent reflections

  • 1545 reflections with I > −3.0σ(I)

  • Rint = 0.009

  • θmax = 27.5°

  • h = −11 → 11

  • k = −13 → 13

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.073

  • S = 0.91

  • 1545 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Modified Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) with the coefficients 11.3, 16.9, 8.59, 2.51

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H8⋯O11i 0.83 2.11 2.926 (2) 167
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 and O—H = 0.82 Å) and displacement parameters [Uiso(H) = 1.2–1.5Ueq of the parent atom], after which they were refined with riding constraints. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2,5-Di-O-acetyl-3-C-methyl-D-lyxono-1,4-lactone top
Crystal data top
C10H14O7Dx = 1.397 Mg m3
Mr = 246.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1560 reflections
a = 8.8524 (1) Åθ = 5–27°
b = 10.0821 (2) ŵ = 0.12 mm1
c = 13.1198 (2) ÅT = 150 K
V = 1170.95 (3) Å3Plate, colourless
Z = 40.20 × 0.20 × 0.08 mm
F(000) = 520
Data collection top
Nonius KappaCCD
diffractometer
1545 reflections with I > 3.0σ(I)
Graphite monochromatorRint = 0.009
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.869, Tmax = 0.990k = 1313
2688 measured reflectionsl = 1616
1545 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.073 Modified Chebychev polynomial (Watkin, 1994; Prince, 1982) with the coefficients 11.3, 16.9, 8.59, 2.51
S = 0.91(Δ/σ)max = 0.000247
1545 reflectionsΔρmax = 0.27 e Å3
154 parametersΔρmin = 0.24 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.86077 (18)0.77278 (17)0.32579 (13)0.0218
C30.8007 (2)0.67351 (18)0.24961 (15)0.0246
O40.66668 (14)0.71630 (12)0.21387 (10)0.0259
C50.63200 (19)0.84694 (16)0.25745 (13)0.0220
C60.5579 (2)0.93071 (18)0.17730 (14)0.0265
O70.41613 (14)0.86863 (13)0.14924 (10)0.0273
C180.3294 (2)0.94326 (18)0.08704 (14)0.0268
O90.36545 (17)1.05300 (14)0.06062 (12)0.0388
C100.1867 (2)0.8737 (2)0.05766 (17)0.0364
O110.85646 (17)0.57035 (13)0.22296 (12)0.0339
O121.02057 (13)0.78292 (13)0.31932 (9)0.0252
C131.10358 (19)0.72849 (17)0.39600 (12)0.0213
O141.04802 (15)0.66905 (14)0.46585 (9)0.0287
C151.26726 (19)0.75652 (18)0.37875 (14)0.0268
O160.85902 (15)0.95473 (13)0.20639 (10)0.0256
C170.7718 (2)1.00576 (19)0.37796 (15)0.0293
C80.78459 (19)0.90227 (16)0.29387 (14)0.0213
H210.83380.74550.39660.0271*
H510.56290.83390.31810.0261*
H610.53871.02040.20230.0320*
H620.61960.93600.11570.0329*
H1010.12030.93670.03010.0559*
H1020.13820.83030.11740.0566*
H1030.21290.80820.00820.0564*
H1511.32940.69410.42210.0381*
H1521.28880.84580.40110.0385*
H1531.28960.75070.30760.0376*
H1710.71831.08200.35110.0404*
H1720.87371.03540.39900.0404*
H1730.71970.97510.43860.0401*
H80.94350.97470.22870.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0173 (7)0.0227 (7)0.0255 (7)0.0016 (7)0.0011 (7)0.0038 (7)
C30.0205 (8)0.0245 (8)0.0289 (8)0.0001 (7)0.0023 (7)0.0031 (7)
O40.0213 (6)0.0218 (5)0.0345 (6)0.0015 (5)0.0067 (5)0.0018 (5)
C50.0184 (7)0.0193 (7)0.0285 (8)0.0002 (6)0.0008 (7)0.0016 (6)
C60.0195 (8)0.0249 (8)0.0351 (9)0.0000 (7)0.0038 (7)0.0059 (8)
O70.0211 (6)0.0252 (6)0.0356 (7)0.0003 (5)0.0058 (5)0.0068 (6)
C180.0248 (8)0.0275 (8)0.0282 (8)0.0058 (7)0.0021 (7)0.0025 (7)
O90.0360 (8)0.0329 (7)0.0476 (8)0.0021 (6)0.0096 (7)0.0145 (7)
C100.0300 (9)0.0390 (10)0.0401 (11)0.0025 (9)0.0114 (9)0.0041 (9)
O110.0305 (7)0.0262 (6)0.0450 (8)0.0085 (6)0.0066 (7)0.0058 (6)
O120.0160 (5)0.0312 (6)0.0284 (6)0.0025 (5)0.0012 (5)0.0072 (6)
C130.0205 (7)0.0205 (7)0.0230 (7)0.0018 (7)0.0017 (6)0.0030 (7)
O140.0258 (6)0.0351 (7)0.0254 (6)0.0045 (6)0.0011 (5)0.0060 (6)
C150.0192 (8)0.0318 (9)0.0292 (8)0.0006 (7)0.0018 (7)0.0040 (8)
O160.0216 (6)0.0282 (6)0.0270 (6)0.0028 (5)0.0012 (5)0.0085 (5)
C170.0312 (10)0.0249 (8)0.0318 (9)0.0032 (8)0.0005 (8)0.0023 (8)
C80.0195 (7)0.0208 (7)0.0236 (8)0.0022 (6)0.0012 (7)0.0044 (7)
Geometric parameters (Å, º) top
C2—C31.511 (2)C10—H1010.937
C2—O121.4208 (19)C10—H1020.995
C2—C81.528 (2)C10—H1030.955
C2—H210.997O12—C131.361 (2)
C3—O41.347 (2)C13—O141.200 (2)
C3—O111.203 (2)C13—C151.493 (2)
O4—C51.468 (2)C15—H1511.012
C5—C61.500 (2)C15—H1520.966
C5—C81.538 (2)C15—H1530.956
C5—H511.012O16—C81.425 (2)
C6—O71.450 (2)O16—H80.828
C6—H610.977C17—C81.523 (3)
C6—H620.977C17—H1710.969
O7—C181.349 (2)C17—H1720.990
C18—O91.203 (2)C17—H1730.970
C18—C101.496 (3)
C3—C2—O12111.00 (14)H101—C10—H102109.3
C3—C2—C8103.26 (14)C18—C10—H103107.1
O12—C2—C8111.20 (14)H101—C10—H103111.1
C3—C2—H21110.4H102—C10—H103109.6
O12—C2—H21108.3C2—O12—C13117.67 (13)
C8—C2—H21112.7O12—C13—O14122.97 (15)
C2—C3—O4109.15 (15)O12—C13—C15109.61 (14)
C2—C3—O11128.36 (17)O14—C13—C15127.42 (16)
O4—C3—O11122.47 (17)C13—C15—H151108.9
C3—O4—C5109.63 (13)C13—C15—H152108.8
O4—C5—C6108.88 (14)H151—C15—H152107.6
O4—C5—C8105.23 (13)C13—C15—H153109.7
C6—C5—C8113.44 (14)H151—C15—H153113.5
O4—C5—H51108.4H152—C15—H153108.2
C6—C5—H51111.1C8—O16—H8102.9
C8—C5—H51109.5C8—C17—H171108.5
C5—C6—O7108.27 (14)C8—C17—H172109.9
C5—C6—H61111.2H171—C17—H172107.9
O7—C6—H61109.5C8—C17—H173114.3
C5—C6—H62111.5H171—C17—H173108.6
O7—C6—H62107.3H172—C17—H173107.5
H61—C6—H62108.9C5—C8—C299.38 (12)
C6—O7—C18113.90 (14)C5—C8—C17114.10 (14)
O7—C18—O9122.45 (18)C2—C8—C17114.82 (15)
O7—C18—C10112.03 (16)C5—C8—O16106.89 (14)
O9—C18—C10125.51 (18)C2—C8—O16109.50 (14)
C18—C10—H101108.2C17—C8—O16111.32 (14)
C18—C10—H102111.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H8···O11i0.832.112.926 (2)167
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472–o1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationKwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901–3904.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationPunzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98–o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food. Chem. 25, 310–320.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R. & Fleet, G. W. J. (2006). Tetrahedron Lett. In preparation.  Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds