metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Di­chloro­tris­(tri­methyl­phosphine)(tri­methyl­phospho­niometh­yl)rhodium(III) chloride/bromide di­chloro­methane benzene solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 8 February 2006; accepted 15 February 2006; online 22 February 2006)

The title complex, [RhCl2(C4H11P)(C3H9P)3](Br0.12/Cl0.88)·CH2Cl2·C6H6, has an ionic structure with fac-octa­hedral coordination of RhIII in the cation. The anion is a mixture of Cl and Br in a 7:1 ratio.

Comment

The fac-[RhCl2(CH2PMe3)(PMe3)3]Cl salt has been prepared by Marder, Fultz et al. (1987[Marder, T. B., Zargarian, D., Calabrese, J. C., Herskovitz, T. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1484-1485.]) via a reaction of dichloro­methane (DCM) with a 16-electron RhI complex [RhCl(PMe3)3], and characterized by an X-ray crystal structure analysis of its DCM monosolvate, (Ia). We report here a solvated mixed-anion salt analogue of (Ia), obtained as a by-product during our ongoing study of PMe3-containing rhodium–acetyl­ide complexes (Zhu et al., 2006[Zhu, Z.,. Ward, R. M., Albesa-Jové, D., Howard, J. A. K., Porrés, L., Beeby, A., Low, P. J., Wong, W.-K. & Marder, T. B. (2006). Inorg. Chim. Acta. In the press. (doi: 10.1016/j.ica.2005.11.030)]; Rourke et al., 2002[Rourke, J. P., Stringer, G., Chow, P., Deeth, R. J., Yufit, D. S., Howard, J. A. K. & Marder, T. B. (2002). Organometallics, 21, 429-437.]; Rourke et al., 1995[Rourke, J. P., Bruce, D. W. & Marder, T. B. (1995). J. Chem. Soc. Dalton Trans. pp. 317-318.], 2001[Rourke, J. P., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2001). Chem. Commun. pp. 2626-2627.]; Fyfe et al., 1991[Fyfe, H. B., Mlekuz, M., Zargarian, D., Taylor, N. J. & Marder, T. B. (1991). J. Chem. Soc. Chem. Commun. pp. 188-190.]; Chow et al., 1989[Chow, P., Zargarian, D., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1545-1547.]; Zargarian et al., 1989[Zargarian, D., Chow, P., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 540-544.]; Marder, Zargarian et al., 1987[Marder, T. B., Fultz, W. C., Calabrese, J. C., Harlow, R. L. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1543-1545.]).

[Scheme 1]

The asymmetric unit of (I)[link] comprises one fac-[RhCl2(CH2PMe3)(PMe3)3]+ cation, one halide anion and one DCM mol­ecule in general positions, and two half-molecules of benzene; the benzene rings lie on crystallographic inversion centres. The cation has a somewhat distorted fac-octa­hedral geometry, very similar to that of (Ia). The Rh—P bond trans to C1 is ca 0.1 Å longer than the other two, indicating the strong trans influence of a σ-bonded C atom in comparison with the chloride ligands. The P1—Me bond lengths in the phospho­niomethyl ligand average 1.793 (2) Å, appreciably shorter than in the phosphine ligands [1.804 (2)–1.837 (2) Å, average 1.818 (9) Å].

Initial treatment of the anion as purely Cl gave high residual electron density of 2.4 e Å−3 and R[F2>2σ(F2)] = 0.037. Modelling the disorder between Cl and Br in a 7:1 ratio resulted in satisfactory refinement. The source of bromide was found to be an impure commercial sample of RhCl3·3H2O, which contained a small amount of the bromo analogue, as confirmed later by spectroscopic analysis.

The anion is surrounded by ten H atoms at distances of 2.74–3.17 Å (2.70–3.09 Å using C—H distances normalised to the neutron diffraction value of 1.08 Å). The DCM mol­ecules form hydrogen bonds to both chloro ligands of the cation, especially Cl1 (adjusted H⋯Cl distances of 2.54 and 2.74 Å).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Atomic displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Experimental

Conversion of impure commercial RhCl3·2H2O to Rh(PPh3)3Cl/Br was followed by reaction with PMe3 (Jones et al., 1980[Jones, R. A., Mayor Real, F., Wilkinson, G., Gales, A. M. R., Hursthouse, M. B. & Abdul Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511-518.]) which gave the salt, [Rh(PMe3)4]+·Cl/Br, which subsequently reacted with DCM solvent to give a very small amount of the title complex. The absence of bromide at the rhodium centre shows that both halides which are coordinated to the metal originate from the DCM and that little, if any, exchange occurs between these and the outer-sphere halide ion.

Crystal data
  • [RhCl2(C4H11P)(C3H9P)3](Br0.12/Cl0.88)·CH2Cl2·C6H6

  • Mr = 696.17

  • Monoclinic, P 21 /c

  • a = 16.949 (3) Å

  • b = 10.3396 (15) Å

  • c = 18.424 (3) Å

  • β = 105.07 (1)°

  • V = 3117.7 (9) Å3

  • Z = 4

  • Dx = 1.483 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 999 reflections

  • θ = 12.1–23.7°

  • μ = 1.34 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.19 × 0.13 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.685, Tmax = 0.845

  • 55018 measured reflections

  • 13203 independent reflections

  • 10300 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 35.0°

  • h = −26 → 26

  • k = −16 → 16

  • l = −29 → 29

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.04

  • 13203 reflections

  • 295 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0339P)2 + 0.4573P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H141⋯Cl1 0.99 2.60 3.498 (2) 150
C14—H142⋯Cl2i 0.99 2.81 3.6455 (19) 142
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Methyl groups were treated as rigid bodies (C—H = 0.98 Å) rotating around the P—C bonds, with a common refined Uiso value for the three H atoms. Other H atoms were treated as riding on the attached C atoms [Csp2—H = 0.95 Å and Csp3—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C) and 1.3Ueq(C), respectively]. The maximum electron-density peak lies 0.05 Å from the Rh atom

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

fac-Dichlorotris(trimethylphosphine)(trimethylphosphoniomethyl)rhodium(I) chloride/bromide benzene dichloromethane solvate top
Crystal data top
[RhCl2(C4H11P)(C3H9P)3](Br0.12/Cl0.88)·CH2Cl2·C6H6F(000) = 1433
Mr = 696.17Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 16.949 (3) Åθ = 12.1–23.7°
b = 10.3396 (15) ŵ = 1.34 mm1
c = 18.424 (3) ÅT = 120 K
β = 105.07 (1)°Block, colourless
V = 3117.7 (9) Å30.40 × 0.19 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
13203 independent reflections
Radiation source: fine-focus sealed tube10300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8 pixels mm-1θmax = 35.0°, θmin = 2.3°
ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1616
Tmin = 0.685, Tmax = 0.845l = 2929
55018 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.4573P]
where P = (Fo2 + 2Fc2)/3
13203 reflections(Δ/σ)max = 0.002
295 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.82 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (5 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.84 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh0.229827 (6)0.536706 (10)0.289944 (6)0.01384 (3)
Cl10.18701 (2)0.61106 (3)0.159669 (19)0.02219 (7)
Cl20.14223 (2)0.70624 (4)0.31903 (2)0.02406 (7)
P10.33377 (2)0.81314 (4)0.25532 (2)0.01798 (7)
P20.30304 (2)0.38566 (3)0.24615 (2)0.01641 (7)
P30.28405 (2)0.48700 (4)0.41363 (2)0.01699 (7)
P40.11282 (2)0.40051 (4)0.27184 (2)0.01937 (7)
C10.32553 (8)0.67881 (13)0.31290 (8)0.0166 (2)
H110.32640.71530.36280.022*
H120.37710.62980.31970.022*
C20.37100 (11)0.77446 (16)0.17549 (9)0.0272 (3)
H210.42110.72320.19170.033 (3)*
H220.38270.85450.15170.033 (3)*
H230.32960.72450.13930.033 (3)*
C30.41169 (9)0.91431 (14)0.31234 (9)0.0220 (3)
H310.39160.95280.35270.033 (3)*
H320.42560.98310.28120.033 (3)*
H330.46040.86230.33420.033 (3)*
C40.24409 (10)0.91192 (15)0.22570 (10)0.0282 (3)
H410.20030.86180.19230.037 (3)*
H420.25650.98790.19880.037 (3)*
H430.22650.94000.26980.037 (3)*
C50.25121 (10)0.31665 (16)0.15535 (9)0.0256 (3)
H510.24190.38440.11690.048 (4)*
H520.19870.28010.15800.048 (4)*
H530.28520.24830.14230.048 (4)*
C60.39691 (10)0.44019 (16)0.22732 (11)0.0285 (3)
H610.42140.36920.20550.035 (3)*
H620.43500.46820.27430.035 (3)*
H630.38530.51280.19190.035 (3)*
C70.33736 (11)0.23993 (15)0.30053 (9)0.0275 (3)
H710.36730.18500.27340.036 (3)*
H720.28990.19270.30790.036 (3)*
H730.37340.26360.34950.036 (3)*
C80.25986 (11)0.33373 (16)0.45108 (9)0.0273 (3)
H810.28990.32670.50410.037 (3)*
H820.27560.26250.42270.037 (3)*
H830.20100.32940.44660.037 (3)*
C90.39542 (9)0.49043 (17)0.44665 (9)0.0245 (3)
H910.41470.57970.44610.034 (3)*
H920.41890.43710.41350.034 (3)*
H930.41240.45640.49800.034 (3)*
C100.25548 (11)0.59942 (17)0.47770 (9)0.0287 (3)
H1010.19610.59740.47020.043 (4)*
H1020.27250.68690.46800.043 (4)*
H1030.28240.57470.52960.043 (4)*
C110.04928 (10)0.42890 (19)0.33590 (10)0.0310 (4)
H1110.03250.51990.33300.049 (4)*
H1120.08040.40860.38730.049 (4)*
H1130.00070.37360.32190.049 (4)*
C120.11822 (11)0.22318 (16)0.27556 (10)0.0304 (4)
H1210.06280.18740.26350.044 (4)*
H1220.14810.19570.32620.044 (4)*
H1230.14670.19180.23900.044 (4)*
C130.04018 (10)0.4277 (2)0.18184 (10)0.0325 (4)
H1310.00840.37410.17820.044 (4)*
H1320.06530.40450.14130.044 (4)*
H1330.02440.51910.17730.044 (4)*
Cl30.42954 (2)0.11637 (3)0.144351 (17)0.02349 (6)0.88
Br30.42954 (2)0.11637 (3)0.144351 (17)0.02349 (6)0.12
Cl40.09222 (3)0.41111 (5)0.03212 (3)0.03798 (10)
Cl50.24553 (3)0.52306 (5)0.04391 (4)0.05161 (15)
C140.14745 (12)0.55584 (18)0.03378 (10)0.0332 (4)
H1410.15200.60420.01350.043*
H1420.11750.61070.07610.043*
C150.50603 (17)0.6315 (2)0.00684 (14)0.0600 (8)
H150.50970.72300.01130.072*
C160.44929 (14)0.5659 (3)0.03177 (12)0.0529 (7)
H160.41390.61240.05470.063*
C170.44154 (14)0.4357 (3)0.02495 (13)0.0558 (7)
H170.40050.39160.04190.067*
C180.01271 (16)0.1256 (2)0.02329 (13)0.0475 (6)
H180.02130.21270.03990.057*
C190.07078 (13)0.0337 (2)0.05252 (12)0.0437 (5)
H190.11980.05770.08840.052*
C200.05787 (14)0.0927 (2)0.02988 (13)0.0457 (5)
H200.09740.15690.05070.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh0.01361 (5)0.01403 (5)0.01337 (5)0.00044 (4)0.00258 (3)0.00092 (4)
Cl10.02662 (16)0.02095 (16)0.01585 (14)0.00044 (13)0.00012 (12)0.00117 (12)
Cl20.02070 (15)0.02352 (17)0.02747 (18)0.00508 (13)0.00542 (13)0.00617 (14)
P10.02141 (17)0.01436 (15)0.01723 (16)0.00006 (13)0.00336 (13)0.00128 (13)
P20.01733 (15)0.01453 (15)0.01748 (16)0.00100 (12)0.00470 (12)0.00160 (12)
P30.01761 (16)0.01869 (16)0.01389 (15)0.00203 (13)0.00270 (12)0.00031 (12)
P40.01625 (15)0.02318 (18)0.01866 (17)0.00361 (13)0.00450 (13)0.00279 (14)
C10.0193 (6)0.0137 (6)0.0158 (6)0.0001 (5)0.0028 (5)0.0004 (5)
C20.0393 (9)0.0225 (7)0.0218 (7)0.0051 (6)0.0113 (7)0.0005 (6)
C30.0239 (7)0.0183 (6)0.0235 (7)0.0036 (5)0.0056 (6)0.0006 (5)
C40.0277 (8)0.0179 (7)0.0328 (8)0.0031 (6)0.0035 (6)0.0035 (6)
C50.0276 (7)0.0257 (7)0.0229 (7)0.0017 (6)0.0053 (6)0.0072 (6)
C60.0261 (7)0.0244 (8)0.0400 (9)0.0036 (6)0.0173 (7)0.0088 (7)
C70.0346 (8)0.0195 (7)0.0274 (8)0.0072 (6)0.0066 (7)0.0009 (6)
C80.0335 (8)0.0259 (8)0.0214 (7)0.0085 (6)0.0051 (6)0.0057 (6)
C90.0197 (7)0.0307 (8)0.0201 (7)0.0013 (6)0.0004 (5)0.0045 (6)
C100.0344 (9)0.0335 (9)0.0190 (7)0.0006 (7)0.0086 (6)0.0047 (6)
C110.0242 (7)0.0394 (9)0.0333 (9)0.0067 (7)0.0147 (7)0.0063 (7)
C120.0318 (8)0.0235 (8)0.0370 (9)0.0085 (7)0.0111 (7)0.0020 (7)
C130.0212 (7)0.0452 (10)0.0270 (8)0.0101 (7)0.0012 (6)0.0005 (7)
Cl30.02833 (15)0.02127 (14)0.02166 (14)0.00353 (12)0.00789 (12)0.00012 (11)
Br30.02833 (15)0.02127 (14)0.02166 (14)0.00353 (12)0.00789 (12)0.00012 (11)
Cl40.0394 (2)0.0404 (2)0.0334 (2)0.0014 (2)0.00803 (18)0.00547 (19)
Cl50.0365 (3)0.0337 (3)0.0828 (4)0.0034 (2)0.0122 (3)0.0110 (3)
C140.0410 (10)0.0297 (9)0.0253 (8)0.0078 (7)0.0023 (7)0.0004 (7)
C150.0668 (16)0.0338 (10)0.0528 (14)0.0045 (11)0.0320 (12)0.0009 (10)
C160.0422 (12)0.0815 (18)0.0282 (10)0.0197 (12)0.0029 (8)0.0181 (11)
C170.0340 (10)0.091 (2)0.0351 (11)0.0169 (12)0.0038 (9)0.0234 (12)
C180.0749 (16)0.0349 (10)0.0459 (12)0.0133 (11)0.0392 (12)0.0072 (9)
C190.0316 (9)0.0714 (16)0.0295 (9)0.0128 (10)0.0106 (8)0.0020 (10)
C200.0464 (12)0.0562 (13)0.0441 (11)0.0171 (10)0.0288 (10)0.0166 (10)
Geometric parameters (Å, º) top
Rh—C12.1475 (14)C7—H730.9799
Rh—P22.2695 (4)C8—H810.9800
Rh—P32.2832 (5)C8—H820.9800
Rh—P42.3840 (5)C8—H830.9801
Rh—Cl12.4439 (5)C9—H910.9800
Rh—Cl22.4449 (4)C9—H920.9800
P1—C11.7751 (14)C9—H930.9799
P1—C21.7900 (16)C10—H1010.9801
P1—C41.7944 (16)C10—H1020.9799
P1—C31.7946 (15)C10—H1030.9801
P2—C61.8046 (16)C11—H1110.9800
P2—C71.8191 (16)C11—H1120.9800
P2—C51.8208 (16)C11—H1130.9800
P3—C101.8100 (17)C12—H1210.9800
P3—C81.8174 (16)C12—H1220.9800
P3—C91.8267 (16)C12—H1230.9799
P4—C131.8117 (17)C13—H1310.9799
P4—C111.8165 (17)C13—H1320.9800
P4—C121.8362 (18)C13—H1330.9800
C1—H110.9900Cl4—C141.770 (2)
C1—H120.9900Cl5—C141.753 (2)
C2—H210.9800C14—H1410.9900
C2—H220.9801C14—H1420.9900
C2—H230.9799C15—C161.351 (4)
C3—H310.9799C15—C17i1.373 (4)
C3—H320.9800C15—H150.9500
C3—H330.9799C16—C171.356 (4)
C4—H410.9799C16—H160.9499
C4—H420.9800C17—C15i1.373 (4)
C4—H430.9799C17—H170.9499
C5—H510.9799C18—C191.373 (3)
C5—H520.9800C18—C20ii1.377 (3)
C5—H530.9800C18—H180.9500
C6—H610.9799C19—C201.372 (3)
C6—H620.9800C19—H190.9500
C6—H630.9800C20—C18ii1.378 (3)
C7—H710.9800C20—H200.9499
C7—H720.9799
C1—Rh—P294.94 (4)H61—C6—H62109.5
C1—Rh—P382.53 (4)P2—C6—H63109.5
P2—Rh—P394.848 (17)H61—C6—H63109.5
C1—Rh—P4171.86 (4)H62—C6—H63109.5
P2—Rh—P493.191 (18)P2—C7—H71109.5
P3—Rh—P496.375 (16)P2—C7—H72109.5
C1—Rh—Cl189.68 (4)H71—C7—H72109.5
P2—Rh—Cl185.269 (16)P2—C7—H73109.5
P3—Rh—Cl1172.191 (14)H71—C7—H73109.5
P4—Rh—Cl191.412 (16)H72—C7—H73109.5
C1—Rh—Cl286.38 (4)P3—C8—H81109.5
P2—Rh—Cl2172.141 (14)P3—C8—H82109.5
P3—Rh—Cl293.005 (16)H81—C8—H82109.5
P4—Rh—Cl285.625 (18)P3—C8—H83109.5
Cl1—Rh—Cl286.992 (16)H81—C8—H83109.5
C1—P1—C2114.56 (7)H82—C8—H83109.5
C1—P1—C4115.79 (8)P3—C9—H91109.5
C2—P1—C4109.20 (9)P3—C9—H92109.5
C1—P1—C3105.46 (7)H91—C9—H92109.5
C2—P1—C3104.37 (8)P3—C9—H93109.5
C4—P1—C3106.41 (8)H91—C9—H93109.5
C6—P2—C7101.13 (8)H92—C9—H93109.5
C6—P2—C5100.64 (8)P3—C10—H101109.5
C7—P2—C5100.96 (8)P3—C10—H102109.5
C6—P2—Rh116.37 (6)H101—C10—H102109.5
C7—P2—Rh120.02 (6)P3—C10—H103109.5
C5—P2—Rh114.74 (5)H101—C10—H103109.5
C10—P3—C8100.80 (8)H102—C10—H103109.5
C10—P3—C9101.47 (8)P4—C11—H111109.5
C8—P3—C9101.90 (8)P4—C11—H112109.5
C10—P3—Rh113.57 (6)H111—C11—H112109.5
C8—P3—Rh120.21 (6)P4—C11—H113109.5
C9—P3—Rh116.16 (5)H111—C11—H113109.5
C13—P4—C11101.13 (9)H112—C11—H113109.5
C13—P4—C12101.79 (9)P4—C12—H121109.5
C11—P4—C1299.75 (9)P4—C12—H122109.5
C13—P4—Rh112.28 (6)H121—C12—H122109.5
C11—P4—Rh115.20 (6)P4—C12—H123109.5
C12—P4—Rh123.57 (6)H121—C12—H123109.5
P1—C1—Rh126.18 (7)H122—C12—H123109.5
P1—C1—H11105.8P4—C13—H131109.5
Rh—C1—H11105.8P4—C13—H132109.5
P1—C1—H12105.8H131—C13—H132109.5
Rh—C1—H12105.8P4—C13—H133109.5
H11—C1—H12106.2H131—C13—H133109.5
P1—C2—H21109.5H132—C13—H133109.5
P1—C2—H22109.5Cl5—C14—Cl4111.03 (10)
H21—C2—H22109.5Cl5—C14—H141109.4
P1—C2—H23109.5Cl4—C14—H141109.4
H21—C2—H23109.5Cl5—C14—H142109.4
H22—C2—H23109.5Cl4—C14—H142109.5
P1—C3—H31109.5H141—C14—H142108.0
P1—C3—H32109.5C16—C15—C17i119.2 (2)
H31—C3—H32109.5C16—C15—H15120.4
P1—C3—H33109.5C17i—C15—H15120.4
H31—C3—H33109.5C15—C16—C17121.8 (2)
H32—C3—H33109.5C15—C16—H16119.1
P1—C4—H41109.5C17—C16—H16119.1
P1—C4—H42109.5C16—C17—C15i119.0 (2)
H41—C4—H42109.5C16—C17—H17120.5
P1—C4—H43109.5C15i—C17—H17120.5
H41—C4—H43109.5C19—C18—C20ii120.6 (2)
H42—C4—H43109.5C19—C18—H18119.7
P2—C5—H51109.5C20ii—C18—H18119.7
P2—C5—H52109.5C20—C19—C18119.9 (2)
H51—C5—H52109.5C20—C19—H19120.1
P2—C5—H53109.5C18—C19—H19120.0
H51—C5—H53109.5C19—C20—C18ii119.5 (2)
H52—C5—H53109.5C19—C20—H20120.2
P2—C6—H61109.5C18ii—C20—H20120.3
P2—C6—H62109.5
Cl1—Rh—C1—P114.80 (9)Rh—C1—P1—C3167.66 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H141···Cl10.992.603.498 (2)150
C14—H142···Cl2iii0.992.813.6455 (19)142
Symmetry code: (iii) x, y+3/2, z1/2.
 

Footnotes

Current address: Lehrstrul für Anorganische Chemie II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

References

First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChow, P., Zargarian, D., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1545–1547.  CrossRef Google Scholar
First citationFyfe, H. B., Mlekuz, M., Zargarian, D., Taylor, N. J. & Marder, T. B. (1991). J. Chem. Soc. Chem. Commun. pp. 188–190.  CrossRef Google Scholar
First citationJones, R. A., Mayor Real, F., Wilkinson, G., Gales, A. M. R., Hursthouse, M. B. & Abdul Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511–518.  CrossRef Google Scholar
First citationMarder, T. B., Fultz, W. C., Calabrese, J. C., Harlow, R. L. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1543–1545.  CrossRef Google Scholar
First citationMarder, T. B., Zargarian, D., Calabrese, J. C., Herskovitz, T. & Milstein, D. (1987). J. Chem. Soc. Chem. Commun. pp. 1484–1485.  CrossRef Google Scholar
First citationRourke, J. P., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2001). Chem. Commun. pp. 2626–2627.  CrossRef Google Scholar
First citationRourke, J. P., Bruce, D. W. & Marder, T. B. (1995). J. Chem. Soc. Dalton Trans. pp. 317–318.  CrossRef Google Scholar
First citationRourke, J. P., Stringer, G., Chow, P., Deeth, R. J., Yufit, D. S., Howard, J. A. K. & Marder, T. B. (2002). Organometallics, 21, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationZargarian, D., Chow, P., Taylor, N. J. & Marder, T. B. (1989). J. Chem. Soc. Chem. Commun. pp. 540–544.  CrossRef Google Scholar
First citationZhu, Z.,. Ward, R. M., Albesa-Jové, D., Howard, J. A. K., Porrés, L., Beeby, A., Low, P. J., Wong, W.-K. & Marder, T. B. (2006). Inorg. Chim. Acta. In the press. (doi: 10.1016/j.ica.2005.11.030)  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds