organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­ethyl-5-nitro­pyridin-2-amine

CROSSMARK_Color_square_no_text.svg

aChemistry Department, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: d.s.yufit@durham.ac.uk

(Received 13 February 2006; accepted 28 February 2006; online 3 March 2006)

In the title compound, C9H13N3O2, the asymmetric unit contains two almost identical but crystallographically independent mol­ecules. The mol­ecules are linked together by pairs of weak C—H⋯O inter­actions into zigzag chains, which, in turn, form corrugated layers perpendicular to the a axis.

Comment

In continuation of our studies of organic mol­ecules with non-linear optical properties (Yufit et al., 2006[Yufit, D. S., Chetina, O. V. & Howard, J. A. K. (2006). J. Mol. Struct. 784, 214-221.]), an attempt to grow crystals of 2-adamantylamino-5-nitro­pyridine (AANP) (Tomaru et al., 1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]; Anti­pin et al., 2001[Antipin, M. Yu., Timofeeva, T. V., Clark, R. D., Nesterov, V. N., Dolgushin, F. M., Wu, J. & Leyderman, A. (2001). J. Mater. Chem. 11, 351-358.]) by sublimation has been made. As a result, two types of crystals formed in the reaction vessel. An X-ray study of the small cubic-shaped ones revealed that they are, in fact, crystals of N,N-diethyl-5-nitro­pyridine-2-amine, (I)[link], which is a side product in the synthesis of AANP. Here, we briefly describe the structural features of this compound.

[Scheme 1]

The asymmetric unit of (I)[link] contains two virtually identical but crystallographically independent mol­ecules (Fig. 1[link]). These mol­ecules differ slightly in the positions of the terminal C atoms of the ethyl groups (Fig. 2[link]).

The packing of the mol­ecules of (I)[link] is quite different from that of its benzene analogue N,N-diethyl-p-nitro­aniline (Maurin & Krygowski, 1988[Maurin, J. & Krygowski, T. M. (1988). J. Mol. Struct. 172, 413-421.]), in which numerous C—H⋯π inter­actions are present.

In the crystal structure, mol­ecules are linked together by pairs of C—H⋯O [O1i⋯H2(—C2) = 2.74 (1) Å, O2i⋯H3(—C3) = 2.63 (1) Å, O21ii⋯H22(—C22) = 2.67 (1) Å and O22ii⋯H23(—C23) = 2.51 (1) Å; symmetry codes: (i) x, [{5\over 2}]y, [{1\over 2}] + z, (ii) x, [{5\over 2}]y, −[{1\over 2}] + z] inter­actions in zigzag chains parallel to the c axis (Fig. 3[link]); each independent mol­ecule forms separate chains. These chains form corrugated layers perpendicular to a axis (Fig. 4[link]). The pyridine rings of the mol­ecules in adjacent layers are partially overlapped, the shortest inter­planar distance being 3.42 Å, which is within the normal range for ππ aromatic inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A least-squares fit of the pyridine rings of the two independent mol­ecules.
[Figure 3]
Figure 3
The chains of mol­ecules of (I)[link] in a single layer. H atoms of ethyl groups have been omitted for clarity. Dashed lines indicate hydrogen bonds.
[Figure 4]
Figure 4
A packing diagram for (I)[link], viewed down the a axis.

Experimental

The title compound, (I)[link], was isolated by chromatography from the mixture of products of the reaction between 2-chloro­nitro­pyridine (0.948 g, 5.979 mmol) and adamantylamine (0.984 g, 6.594 mmol). The crystals of (I)[link] were formed on heating the powder sample at 343 K for 3 d (yield 0.99 g, 61%; m.p. 440 K).

Crystal data
  • C9H13N3O2

  • Mr = 195.22

  • Monoclinic, P 21 /c

  • a = 14.6723 (7) Å

  • b = 10.6920 (5) Å

  • c = 12.4224 (5) Å

  • β = 96.820 (1)°

  • V = 1934.99 (15) Å3

  • Z = 8

  • Dx = 1.340 Mg m−3

  • Mo- Kα radiation

  • Cell parameters from 4483 reflections

  • θ = 2.4–30.4°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.26 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD 6000 diffractometer

  • ω scans

  • Absorption correction: none

  • 19597 measured reflections

  • 5389 independent reflections

  • 3536 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 29.5°

  • h = −20 → 20

  • k = −14 → 14

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 0.97

  • 5389 reflections

  • 357 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—N1 1.2387 (14)
O2—N1 1.2378 (15)
O21—N21 1.2368 (14)
O22—N21 1.2356 (14)
N1—C1 1.4365 (16)
N2—C5 1.3263 (16)
N2—C4 1.3626 (15)
N3—C4 1.3455 (15)
N3—C8 1.4658 (15)
N3—C6 1.4692 (16)
N21—C21 1.4333 (15)
N22—C25 1.3276 (17)
N22—C24 1.3612 (16)
N23—C24 1.3509 (15)
N23—C28 1.4620 (17)
N23—C26 1.4660 (16)
O2—N1—O1 122.69 (11)
O2—N1—C1 118.57 (11)
O1—N1—C1 118.74 (11)
C5—N2—C4 117.73 (11)
C4—N3—C8 121.56 (10)
C4—N3—C6 121.56 (10)
C8—N3—C6 116.44 (10)
O22—N21—O21 122.40 (11)
O22—N21—C21 118.76 (10)
O21—N21—C21 118.83 (11)
C25—N22—C24 117.57 (11)
C24—N23—C28 121.83 (10)
C24—N23—C26 121.11 (11)
C28—N23—C26 117.04 (10)
N3—C4—N2 116.80 (11)
N3—C4—C3 121.76 (11)

H atoms were located in a difference synthesis and refined isotropically [C—H = 0.922 (14)–0.976 (14) for CH, 0.965 (13)–1.007 (14) for CH2 and 0.970 (17)–1.028 (16) Å for CH3].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

N,N-diethyl-5-nitropyridine-2-amine top
Crystal data top
C9H13N3O2F(000) = 832
Mr = 195.22Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4483 reflections
a = 14.6723 (7) Åθ = 2.4–30.4°
b = 10.6920 (5) ŵ = 0.10 mm1
c = 12.4224 (5) ÅT = 120 K
β = 96.820 (1)°Block, yellow
V = 1934.99 (15) Å30.26 × 0.14 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD 6000
diffractometer
3536 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 29.5°, θmin = 1.4°
ω scansh = 2020
19597 measured reflectionsk = 1414
5389 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 0.97 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
5389 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88641 (7)1.16690 (10)0.20267 (7)0.0395 (3)
O20.85357 (7)1.31005 (9)0.08920 (8)0.0394 (2)
O210.35252 (8)1.16353 (10)1.18822 (7)0.0408 (3)
O220.34599 (7)1.31229 (9)1.06912 (7)0.0336 (2)
N10.86987 (8)1.20006 (11)0.11143 (9)0.0296 (2)
N20.88886 (7)0.89231 (10)0.02259 (8)0.0268 (2)
N30.87939 (7)0.83105 (9)0.19895 (8)0.0236 (2)
N210.35337 (7)1.20055 (10)1.09402 (8)0.0273 (2)
N220.39111 (7)0.89809 (9)0.96485 (9)0.0262 (2)
N230.38857 (7)0.83972 (9)0.78584 (8)0.0260 (2)
C10.86994 (8)1.10729 (12)0.02779 (10)0.0244 (3)
C20.85663 (8)1.14175 (12)0.07749 (10)0.0251 (3)
C30.85941 (8)1.05069 (11)0.15475 (10)0.0234 (3)
C40.87580 (8)0.92429 (11)0.12583 (10)0.0223 (2)
C50.88623 (9)0.98302 (12)0.05055 (10)0.0268 (3)
C60.90970 (9)0.70469 (12)0.17327 (11)0.0262 (3)
C70.83026 (10)0.61517 (13)0.14346 (12)0.0309 (3)
C80.86461 (9)0.85407 (13)0.31190 (10)0.0260 (3)
C90.95032 (10)0.89981 (14)0.38086 (11)0.0328 (3)
C210.36342 (8)1.11063 (11)1.01067 (9)0.0229 (3)
C220.35764 (8)1.14762 (11)0.90234 (10)0.0224 (2)
C230.36722 (8)1.05862 (11)0.82571 (10)0.0226 (2)
C240.38215 (8)0.93229 (11)0.85857 (10)0.0230 (3)
C250.38127 (8)0.98655 (12)1.03757 (10)0.0262 (3)
C260.41529 (9)0.71269 (12)0.82107 (12)0.0283 (3)
C270.33357 (10)0.62959 (14)0.83556 (14)0.0362 (3)
C280.37213 (10)0.86210 (13)0.66905 (10)0.0287 (3)
C290.45757 (11)0.90510 (15)0.62215 (12)0.0361 (3)
H20.8458 (9)1.2287 (13)0.0962 (11)0.025 (3)*
H30.8547 (10)1.0713 (13)0.2259 (11)0.029 (4)*
H50.8977 (9)0.9588 (14)0.1233 (12)0.035 (4)*
H610.9503 (10)0.6739 (13)0.2380 (12)0.034 (4)*
H620.9477 (9)0.7122 (12)0.1149 (11)0.025 (3)*
H710.7969 (11)0.6413 (14)0.0736 (13)0.040 (4)*
H720.8559 (10)0.5284 (15)0.1329 (12)0.042 (4)*
H730.7881 (10)0.6140 (13)0.1993 (12)0.036 (4)*
H810.8431 (9)0.7764 (13)0.3393 (10)0.023 (3)*
H820.8137 (9)0.9168 (13)0.3140 (10)0.027 (4)*
H910.9978 (12)0.8369 (16)0.3803 (13)0.052 (5)*
H920.9758 (10)0.9807 (15)0.3509 (12)0.041 (4)*
H930.9373 (11)0.9131 (15)0.4526 (14)0.048 (5)*
H220.3491 (9)1.2342 (12)0.8839 (10)0.019 (3)*
H230.3659 (9)1.0812 (13)0.7504 (11)0.029 (4)*
H250.3891 (9)0.9642 (13)1.1136 (11)0.030 (4)*
H2610.4578 (10)0.7189 (13)0.8895 (11)0.028 (4)*
H2620.4534 (10)0.6804 (13)0.7657 (12)0.031 (4)*
H2710.3047 (11)0.6582 (15)0.8981 (13)0.045 (5)*
H2720.3546 (11)0.5419 (17)0.8529 (13)0.050 (5)*
H2730.2913 (11)0.6265 (15)0.7689 (13)0.044 (4)*
H2810.3220 (10)0.9221 (13)0.6533 (11)0.030 (4)*
H2820.3488 (10)0.7821 (14)0.6362 (11)0.030 (4)*
H2910.5053 (12)0.8409 (16)0.6329 (13)0.052 (5)*
H2920.4821 (11)0.9817 (16)0.6565 (12)0.044 (4)*
H2930.4438 (10)0.9218 (14)0.5436 (13)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (6)0.0455 (6)0.0230 (5)0.0122 (5)0.0038 (4)0.0050 (4)
O20.0465 (6)0.0308 (5)0.0411 (6)0.0025 (4)0.0057 (5)0.0107 (5)
O210.0614 (7)0.0411 (6)0.0210 (5)0.0002 (5)0.0086 (5)0.0017 (4)
O220.0426 (6)0.0275 (5)0.0300 (5)0.0021 (4)0.0020 (4)0.0050 (4)
N10.0276 (6)0.0330 (6)0.0274 (6)0.0054 (5)0.0001 (4)0.0061 (5)
N20.0316 (6)0.0256 (5)0.0235 (5)0.0018 (4)0.0051 (4)0.0023 (4)
N30.0273 (5)0.0211 (5)0.0228 (5)0.0006 (4)0.0041 (4)0.0002 (4)
N210.0286 (6)0.0303 (6)0.0230 (5)0.0007 (4)0.0030 (4)0.0028 (5)
N220.0293 (6)0.0239 (5)0.0253 (5)0.0002 (4)0.0029 (4)0.0024 (4)
N230.0304 (6)0.0212 (5)0.0260 (5)0.0019 (4)0.0018 (4)0.0005 (4)
C10.0232 (6)0.0273 (6)0.0224 (6)0.0033 (5)0.0018 (5)0.0047 (5)
C20.0227 (6)0.0233 (6)0.0294 (7)0.0002 (5)0.0027 (5)0.0009 (5)
C30.0262 (6)0.0238 (6)0.0205 (6)0.0001 (5)0.0041 (5)0.0022 (5)
C40.0212 (6)0.0229 (6)0.0226 (6)0.0015 (5)0.0019 (5)0.0010 (5)
C50.0299 (7)0.0296 (7)0.0209 (6)0.0045 (5)0.0038 (5)0.0016 (5)
C60.0268 (6)0.0222 (6)0.0296 (7)0.0019 (5)0.0031 (5)0.0001 (5)
C70.0308 (7)0.0252 (7)0.0361 (8)0.0012 (5)0.0019 (6)0.0005 (6)
C80.0300 (7)0.0257 (6)0.0227 (6)0.0004 (5)0.0051 (5)0.0033 (5)
C90.0347 (8)0.0377 (8)0.0252 (7)0.0005 (6)0.0000 (6)0.0011 (6)
C210.0229 (6)0.0246 (6)0.0212 (6)0.0017 (5)0.0029 (5)0.0025 (5)
C220.0213 (6)0.0214 (6)0.0245 (6)0.0006 (5)0.0026 (5)0.0011 (5)
C230.0235 (6)0.0235 (6)0.0209 (6)0.0006 (5)0.0028 (5)0.0019 (5)
C240.0207 (6)0.0235 (6)0.0248 (6)0.0008 (5)0.0030 (5)0.0002 (5)
C250.0280 (7)0.0272 (6)0.0234 (6)0.0015 (5)0.0025 (5)0.0032 (5)
C260.0288 (7)0.0209 (6)0.0354 (7)0.0013 (5)0.0041 (6)0.0007 (6)
C270.0317 (8)0.0271 (7)0.0493 (9)0.0018 (6)0.0034 (7)0.0003 (7)
C280.0327 (7)0.0280 (7)0.0250 (6)0.0014 (6)0.0016 (5)0.0047 (5)
C290.0405 (8)0.0386 (8)0.0304 (8)0.0005 (7)0.0097 (6)0.0023 (7)
Geometric parameters (Å, º) top
O1—N11.2387 (14)C7—H721.015 (16)
O2—N11.2378 (15)C7—H730.983 (15)
O21—N211.2368 (14)C8—C91.516 (2)
O22—N211.2356 (14)C8—H810.965 (13)
N1—C11.4365 (16)C8—H821.007 (14)
N2—C51.3263 (16)C9—H910.970 (17)
N2—C41.3626 (15)C9—H921.028 (16)
N3—C41.3455 (15)C9—H930.944 (17)
N3—C81.4658 (15)C21—C251.3855 (17)
N3—C61.4692 (16)C21—C221.3955 (16)
N21—C211.4333 (15)C22—C231.3650 (17)
N22—C251.3276 (17)C22—H220.958 (13)
N22—C241.3612 (16)C23—C241.4205 (17)
N23—C241.3509 (15)C23—H230.964 (14)
N23—C281.4620 (17)C25—H250.968 (14)
N23—C261.4660 (16)C26—C271.5201 (19)
C1—C51.3851 (18)C26—H2610.995 (14)
C1—C21.3946 (18)C26—H2620.997 (14)
C2—C31.3644 (18)C27—H2710.977 (16)
C2—H20.976 (14)C27—H2721.003 (17)
C3—C41.4261 (17)C27—H2730.974 (17)
C3—H30.922 (14)C28—C291.515 (2)
C5—H50.974 (14)C28—H2810.978 (14)
C6—C71.5197 (19)C28—H2820.991 (15)
C6—H610.997 (15)C29—H2910.978 (18)
C6—H620.970 (13)C29—H2920.973 (17)
C7—H710.985 (16)C29—H2930.989 (15)
O2—N1—O1122.69 (11)H81—C8—H82106.9 (11)
O2—N1—C1118.57 (11)C8—C9—H91108.7 (10)
O1—N1—C1118.74 (11)C8—C9—H92112.3 (8)
C5—N2—C4117.73 (11)H91—C9—H92106.8 (13)
C4—N3—C8121.56 (10)C8—C9—H93109.6 (10)
C4—N3—C6121.56 (10)H91—C9—H93109.7 (13)
C8—N3—C6116.44 (10)H92—C9—H93109.7 (13)
O22—N21—O21122.40 (11)C25—C21—C22119.48 (11)
O22—N21—C21118.76 (10)C25—C21—N21120.05 (11)
O21—N21—C21118.83 (11)C22—C21—N21120.45 (11)
C25—N22—C24117.57 (11)C23—C22—C21118.39 (11)
C24—N23—C28121.83 (10)C23—C22—H22121.9 (8)
C24—N23—C26121.11 (11)C21—C22—H22119.7 (8)
C28—N23—C26117.04 (10)C22—C23—C24119.18 (11)
C5—C1—C2119.45 (11)C22—C23—H23120.7 (8)
C5—C1—N1120.00 (11)C24—C23—H23120.1 (8)
C2—C1—N1120.51 (11)N23—C24—N22116.45 (11)
C3—C2—C1118.38 (12)N23—C24—C23121.68 (11)
C3—C2—H2120.3 (8)N22—C24—C23121.87 (11)
C1—C2—H2121.3 (8)N22—C25—C21123.42 (12)
C2—C3—C4119.40 (11)N22—C25—H25118.6 (8)
C2—C3—H3120.3 (9)C21—C25—H25118.0 (8)
C4—C3—H3120.1 (9)N23—C26—C27112.96 (11)
N3—C4—N2116.80 (11)N23—C26—H261108.2 (8)
N3—C4—C3121.76 (11)C27—C26—H261111.1 (8)
N2—C4—C3121.44 (11)N23—C26—H262105.5 (8)
N2—C5—C1123.59 (11)C27—C26—H262113.1 (8)
N2—C5—H5116.6 (9)H261—C26—H262105.5 (11)
C1—C5—H5119.8 (9)C26—C27—H271109.5 (9)
N3—C6—C7112.89 (11)C26—C27—H272110.2 (10)
N3—C6—H61107.2 (8)H271—C27—H272105.9 (13)
C7—C6—H61110.9 (8)C26—C27—H273110.5 (10)
N3—C6—H62107.6 (8)H271—C27—H273113.2 (13)
C7—C6—H62111.3 (8)H272—C27—H273107.5 (13)
H61—C6—H62106.8 (12)N23—C28—C29112.63 (12)
C6—C7—H71108.8 (9)N23—C28—H281109.7 (8)
C6—C7—H72108.8 (9)C29—C28—H281111.2 (8)
H71—C7—H72107.4 (12)N23—C28—H282106.0 (8)
C6—C7—H73111.4 (9)C29—C28—H282111.4 (8)
H71—C7—H73109.8 (12)H281—C28—H282105.6 (11)
H72—C7—H73110.7 (12)C28—C29—H291110.2 (10)
N3—C8—C9112.83 (11)C28—C29—H292111.5 (9)
N3—C8—H81106.5 (8)H291—C29—H292108.0 (14)
C9—C8—H81111.2 (8)C28—C29—H293110.7 (9)
N3—C8—H82109.4 (7)H291—C29—H293108.7 (12)
C9—C8—H82109.8 (8)H292—C29—H293107.6 (12)
 

Acknowledgements

We thank the EPSRC (UK) for financial support.

References

First citationAntipin, M. Yu., Timofeeva, T. V., Clark, R. D., Nesterov, V. N., Dolgushin, F. M., Wu, J. & Leyderman, A. (2001). J. Mater. Chem. 11, 351–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMaurin, J. & Krygowski, T. M. (1988). J. Mol. Struct. 172, 413–421.  CSD CrossRef CAS Web of Science Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar
First citationYufit, D. S., Chetina, O. V. & Howard, J. A. K. (2006). J. Mol. Struct. 784, 214–221.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds