organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinum di­phenyl­phosphinate monohydrate

CROSSMARK_Color_square_no_text.svg

aDorna Institute of Science, Ahwaz, Khozestan, Iran, and bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 24 February 2006; accepted 3 March 2006; online 15 March 2006)

Hydrogen bonding in the title structure, CH6N3+·C12H10O2P·H2O or [C(NH2)3]+[Ph2PO2]·H2O, results in a bilayer architecture, which also involves ππ stacking inter­actions between pairs of guanidinium ions. All the cation H atoms are involved in hydrogen bonds, five to O atoms of the anion or solvent water and the sixth in an N—H⋯π inter­action with a neighbouring phenyl ring.

Comment

Guanidinium ions have long been utilized in the modelling of Arg–Glu or Arg–Asp side-chain inter­actions in proteins (see, for example, Melo et al., 1999[Melo, A., Ramos, M. J., Floriano, W. B., Gomes, J. A. N. F., Leão, J. F. R., Magalhães, A. L., Maigret, B., Nascimento, M. C. & Reuter, N. (1999). J. Mol. Struct. Theochem. 463, 81-90.]; Fülscher & Mehler, 1988[Fülscher, M. P. & Mehler, E. L. (1988). J. Mol. Struct. Theochem. 165, 319-327.]; Singh et al., 1987[Singh, J., Thornton, J. M., Snarey, M. & Campbell, S. F. (1987). FEBS Lett. 224, 161-171.]). More recently, guanidinium sulfonate inter­actions have been utilized in supramolecular chemistry and crystal engineering. Hydrogen-bonded networks involving guanidinium salts of a range of sulfonated phosphanes and other organic sulfonates have been intensively investigated (Burrows et al., 2003[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 1433-1439, and references therein.]; Horner et al., 2001[Horner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045-4048, and references therein.]; Kathó et al., 2002[Kathó, A., Bényei, A. C., Joó, F. & Sági, M. (2002). Adv. Synth. Catal. 344, 278-282.]; Smith et al., 2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687-o689.]). In these compounds, the match between the trigonal geometry of the cation, having two hydrogen-bond donors on each edge of the triangle, and that of the sulfonate group favours the formation of infinite hydrogen-bonded arrays. These structures generally contain either bilayers or single layers, not always planar, and comprising the quasi-hexa­gonal GS (guanidinium sulfonate) hydrogen-bonding motif. The most important factor in determining whether a single layer or bilayer structure results appears to be the packing inter­actions of the organic superstructure (Horner et al., 2001[Horner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045-4048, and references therein.]).

A search of the Cambridge Structural Database (Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) shows no previously reported phosphinate salts of guanidinium. However, it might be expected that the mismatch between the numbers of hydrogen-bond donors and acceptors could disrupt the sheet structure observed for sulfonate analogues. We have crystallized guanidinium diphenyl­phosphinate as the title monohydrate, (I)[link], which has a bilayer architecture and, perhaps surprisingly, all the hydrogen-bond donors are satisfied.

[Scheme 1]

Fig. 1[link] shows the components of the asymmetric unit and the atom-labelling scheme for (I)[link]. The bond distances and angles are unremarkable. Hydrogen-bond data are given in Table 1[link]. Hydrogen bonding involving the guanidinium ion, the diphenyl­phosphinate O atoms and the water solvent mol­ecule results in a hydrogen-bonded sheet (Fig. 2[link]) lying perpendic­ular to the a axis, in which R77(20) rings (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) are supported by smaller R33(8) and R21(6) patterns. All the phenyl groups of the anion lie on the same side and the sheets are paired to form a bilayer. Further hydrogen bonds link the sheets together, the smallest ring being R55(12) (Fig. 3[link]). In addition to the hydrogen-bonding inter­actions, the guanidinium ions are paired via ππ stacking with a symmetry-equivalent ion under operation (iv) (2 − x, 1 − y, 1 − z). The inter­planar distance is 3.293 (2) Å and the inter­molecular C1—N2iv distance is 3.332 (2) Å (Fig. 4[link]).

Only five of the guanidinium H atoms are involved in conventional hydrogen-bonds to the diphenyl­phosphinate anion or water molecule (Fig. 5[link], Table 1[link]). The sixth H atom (H1A) lies 2.73 (2) Å above the plane of a phenyl ring [C11–C16 under symmetry operation (x, [{1\over 2}] − y, [{1\over 2}] + z)]; the distance from the ring centroid to atom H1A is 2.85 (2) Å. This unusual inter­action is probably responsible for the sharp signal at 3473 cm−1 in the IR spectrum; normal hydrogen-bonding will contribute to the broad signal observed at lower frequency.

The phenyl groups are also involved in several inter­molecular inter­actions. The C12–C16 ring, which inter­acts with the cation as described above, also has a ππ inter­action with the C21–C26 ring of a symmetry-related anion at (x, [{3\over 2}] − y, −[{1\over 2}] + z). The planes of the rings are inclined at 2.6 (1)°, and the mean distance of the C21–C26 ring from the mean plane of C11–C16 is 3.530 (2) Å. The centroid-to-centroid distance [4.059 (3) Å] is rather long but the inter­atomic distances C13—C23 and C14—C22 [3.548 (2) and 3.652 (2), respectively] suggest the ππ inter­action is real, although more staggered than the norm. This may be due to constraints imposed by both phenyl rings being part of the superstructure of the same hydrogen-bonded layer. The second face of the C21–C26 ring shows a C—H⋯π inter­action with atom H13 [under symmetry operation (vi), (1 − x, 1 − y, −z)]; atom H13iv is 2.690 (2) Å from the mean plane of the phenyl ring and 2.695 (2) Å from the centroid of the ring. This appears to be the only significant inter­bilayer inter­action.

In summary, all six guanidinium hydrogen-bond donors of (I)[link] are involved in hydrogen bonding, although one is unconventional. The solvent water mol­ecule makes four hydrogen bonds, two as donor and two as acceptor. One of the phosphinate O atoms acts as acceptor for two hydrogen bonds and the other accepts three [two as part of the R21(6) ring]. All hydrogen-bond donors have acceptors.

[Figure 1]
Figure 1
A perspective view of the asymmetric unit of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
One layer of the hydrogen-bonded sheet, showing R77(20), R33(8) and R21(6) rings. Phenyl groups have been omitted for clarity. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
A packing diagram, viewed along the b axis. H atoms have been omitted and the dashed lines indicate O⋯O and N⋯N non-bonded distances.
[Figure 4]
Figure 4
A perspective view of the bilayer inter­actions. The C1—N2iv and C1iv—N2 ππ inter­actions are shown as dashed red lines. Dashed turquoise lines indicate hydrogen bonds. [Symmetry code: (iv) 2 − x, 1 − y, 1 − z.]
[Figure 5]
Figure 5
A view of the hydrogen bonding (dashed lines) involving the guanidinium ion. Symmetry codes are as in Table 1[link]. H atoms not involved in hydrogen bonding have been omitted.

Experimental

Diphenyl­phosphinic acid (Merck; 1 mmol, 0.218 g) was added to an aqueous solution (10 ml) of guanidinum carbonate (Merck; 1 mmol, 0.180 g) with stirring. This solution yielded large colourless single crystals of (I)[link] after 10 d.

Crystal data
  • CH6N3+·C12H10O2P·H2O

  • Mr = 295.27

  • Monoclinic, P 21 /c

  • a = 11.2395 (10) Å

  • b = 10.0101 (9) Å

  • c = 12.9814 (12) Å

  • β = 98.653 (2)°

  • V = 1443.9 (2) Å3

  • Z = 4

  • Dx = 1.358 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5028 reflections

  • θ = 2.6–28.8°

  • μ = 0.20 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.31 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS, Madison, Wisconsin, USA.])Tmin = 0.85, Tmax = 0.96

  • 11089 measured reflections

  • 2839 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 26.0°

  • h = −13 → 13

  • k = −12 → 12

  • l = −15 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.04

  • 2839 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0468P)2 + 0.6736P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1W 0.91 (2) 2.09 (2) 2.993 (2) 169.9 (19)
N2—H2B⋯O1 0.89 (2) 1.90 (2) 2.7914 (19) 177 (2)
N2—H2A⋯O2i 0.88 (2) 2.11 (2) 2.932 (2) 153.8 (19)
N3—H3B⋯O2i 0.90 (2) 2.04 (2) 2.892 (2) 156.1 (19)
N3—H3A⋯O1Wii 0.88 (2) 1.99 (2) 2.863 (2) 175 (2)
O1W—H1WA⋯O1 0.86 (2) 1.88 (2) 2.7157 (18) 164 (2)
O1W—H1WB⋯O2iii 0.86 (2) 1.86 (2) 2.7061 (18) 168 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

H atoms bonded to aryl C atoms were included in calculated positions, with C—H distances of 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O and N atoms were located in difference maps and assigned a common fixed Uiso of 0.04 Å2; their coordinates were freely refined.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS, Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL.

Guanidinum diphenylphosphinate monohydrate top
Crystal data top
CH6N3+·C12H10O2P·H2OF(000) = 624
Mr = 295.27Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5028 reflections
a = 11.2395 (10) Åθ = 2.6–28.8°
b = 10.0101 (9) ŵ = 0.20 mm1
c = 12.9814 (12) ÅT = 150 K
β = 98.653 (2)°Block, colourless
V = 1443.9 (2) Å30.31 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2839 independent reflections
Radiation source: normal-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.85, Tmax = 0.96k = 1212
11089 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.6736P]
where P = (Fo2 + 2Fc2)/3
2839 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. Spectroscopic analysis: IR (KBr, ν, cm-1) inter alia: 3473 (m, sharp), 3228 (s, br), 1662 (s), 1438 (m), 1152 (m), 1126 (m). Analysis calculated for (CH6N)(C12H10O2P)(H2O): C 52.9, H 6.1, N 14.2%; found: C 51.5, H 6.1, N 14.2%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.79796 (4)0.67583 (4)0.17036 (3)0.01833 (13)
O10.83595 (11)0.57444 (11)0.25453 (8)0.0236 (3)
O20.88275 (10)0.79023 (11)0.15923 (9)0.0227 (3)
C110.77115 (15)0.59049 (16)0.04612 (12)0.0193 (3)
C120.66859 (15)0.51252 (17)0.01707 (13)0.0230 (4)
H120.61070.50450.06310.028*
C130.64994 (16)0.44662 (17)0.07783 (13)0.0258 (4)
H130.57910.39510.09700.031*
C140.73516 (16)0.45604 (17)0.14498 (13)0.0258 (4)
H140.72220.41170.21040.031*
C150.83878 (16)0.53014 (18)0.11620 (13)0.0275 (4)
H150.89790.53490.16120.033*
C160.85656 (16)0.59763 (17)0.02159 (13)0.0237 (4)
H160.92750.64910.00270.028*
C210.65394 (14)0.74541 (16)0.18905 (12)0.0204 (4)
C220.60393 (15)0.71836 (17)0.27863 (13)0.0239 (4)
H220.64430.65950.32980.029*
C230.49556 (16)0.77648 (19)0.29409 (15)0.0292 (4)
H230.46240.75740.35560.035*
C240.43604 (16)0.86223 (19)0.21980 (15)0.0305 (4)
H240.36210.90210.23030.037*
C250.48457 (17)0.88968 (19)0.13031 (15)0.0313 (4)
H250.44360.94820.07920.038*
C260.59263 (16)0.83230 (17)0.11475 (13)0.0257 (4)
H260.62540.85210.05320.031*
C10.84951 (15)0.42953 (17)0.51824 (13)0.0211 (4)
N10.84711 (15)0.31513 (16)0.46534 (13)0.0287 (4)
N20.85314 (14)0.54552 (15)0.47013 (12)0.0260 (3)
N30.84615 (15)0.42724 (17)0.61987 (12)0.0285 (4)
O1W0.88781 (12)0.31041 (13)0.24274 (11)0.0299 (3)
H1A0.8343 (19)0.243 (2)0.4964 (17)0.040*
H1B0.8498 (19)0.317 (2)0.3955 (18)0.040*
H2A0.8634 (19)0.615 (2)0.5120 (17)0.040*
H2B0.8496 (19)0.552 (2)0.4010 (18)0.040*
H3A0.8597 (19)0.352 (2)0.6541 (17)0.040*
H3B0.8528 (19)0.509 (2)0.6505 (17)0.040*
H1WA0.8740 (19)0.394 (2)0.2340 (17)0.040*
H1WB0.963 (2)0.302 (2)0.2650 (17)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0214 (2)0.0171 (2)0.0164 (2)0.00022 (16)0.00256 (16)0.00037 (16)
O10.0308 (7)0.0209 (6)0.0190 (6)0.0036 (5)0.0030 (5)0.0017 (5)
O20.0237 (6)0.0221 (6)0.0219 (6)0.0034 (5)0.0023 (5)0.0005 (5)
C110.0237 (9)0.0162 (8)0.0179 (8)0.0015 (6)0.0029 (6)0.0022 (6)
C120.0238 (9)0.0223 (9)0.0236 (9)0.0008 (7)0.0056 (7)0.0015 (7)
C130.0245 (9)0.0220 (9)0.0296 (9)0.0007 (7)0.0001 (7)0.0044 (7)
C140.0343 (10)0.0240 (9)0.0187 (8)0.0041 (7)0.0028 (7)0.0025 (7)
C150.0332 (10)0.0285 (10)0.0227 (9)0.0005 (8)0.0103 (7)0.0006 (7)
C160.0240 (9)0.0236 (9)0.0237 (9)0.0016 (7)0.0047 (7)0.0009 (7)
C210.0225 (8)0.0168 (8)0.0216 (9)0.0013 (6)0.0021 (7)0.0034 (6)
C220.0276 (9)0.0221 (9)0.0223 (9)0.0004 (7)0.0045 (7)0.0009 (7)
C230.0301 (10)0.0298 (10)0.0295 (10)0.0051 (8)0.0107 (8)0.0063 (8)
C240.0254 (9)0.0283 (10)0.0382 (11)0.0018 (8)0.0063 (8)0.0104 (8)
C250.0297 (10)0.0277 (10)0.0355 (10)0.0061 (8)0.0013 (8)0.0022 (8)
C260.0286 (9)0.0240 (9)0.0252 (9)0.0023 (7)0.0060 (7)0.0018 (7)
C10.0193 (8)0.0236 (9)0.0204 (8)0.0013 (6)0.0030 (6)0.0018 (7)
N10.0380 (9)0.0235 (8)0.0256 (8)0.0027 (7)0.0078 (7)0.0039 (6)
N20.0376 (9)0.0227 (8)0.0176 (7)0.0010 (6)0.0038 (6)0.0003 (6)
N30.0438 (10)0.0224 (8)0.0200 (8)0.0042 (7)0.0070 (7)0.0029 (6)
O1W0.0263 (7)0.0213 (7)0.0398 (8)0.0030 (5)0.0019 (6)0.0037 (6)
Geometric parameters (Å, º) top
P1—O11.5053 (12)C23—C241.386 (3)
P1—O21.5105 (12)C23—H230.9500
P1—C111.8099 (16)C24—C251.383 (3)
P1—C211.8117 (17)C24—H240.9500
C11—C121.396 (2)C25—C261.385 (2)
C11—C161.397 (2)C25—H250.9500
C12—C131.385 (2)C26—H260.9500
C12—H120.9500C1—N21.322 (2)
C13—C141.392 (2)C1—N31.326 (2)
C13—H130.9500C1—N11.333 (2)
C14—C151.384 (2)C1—N2i3.332 (2)
C14—H140.9500N1—H1A0.85 (2)
C15—C161.390 (2)N1—H1B0.91 (2)
C15—H150.9500N2—H2A0.88 (2)
C16—H160.9500N2—H2B0.89 (2)
C21—C221.392 (2)N3—H3A0.88 (2)
C21—C261.401 (2)N3—H3B0.90 (2)
C22—C231.391 (2)O1W—H1WA0.86 (2)
C22—H220.9500O1W—H1WB0.86 (2)
O1—P1—O2117.80 (7)C21—C22—H22119.6
O1—P1—C11108.64 (7)C24—C23—C22120.01 (17)
O2—P1—C11107.18 (7)C24—C23—H23120.0
O1—P1—C21108.88 (7)C22—C23—H23120.0
O2—P1—C21108.10 (7)C25—C24—C23119.83 (17)
C11—P1—C21105.57 (7)C25—C24—H24120.1
C12—C11—C16118.43 (15)C23—C24—H24120.1
C12—C11—P1121.64 (12)C24—C25—C26120.35 (17)
C16—C11—P1119.89 (13)C24—C25—H25119.8
C13—C12—C11120.98 (16)C26—C25—H25119.8
C13—C12—H12119.5C25—C26—C21120.55 (16)
C11—C12—H12119.5C25—C26—H26119.7
C12—C13—C14119.89 (16)C21—C26—H26119.7
C12—C13—H13120.1N2—C1—N3119.52 (16)
C14—C13—H13120.1N2—C1—N1120.71 (16)
C15—C14—C13119.85 (16)N3—C1—N1119.75 (17)
C15—C14—H14120.1N2—C1—N2i81.58 (11)
C13—C14—H14120.1N3—C1—N2i97.74 (11)
C14—C15—C16120.16 (16)N1—C1—N2i91.73 (11)
C14—C15—H15119.9C1—N1—H1A118.3 (15)
C16—C15—H15119.9C1—N1—H1B119.8 (13)
C15—C16—C11120.66 (16)H1A—N1—H1B121 (2)
C15—C16—H16119.7C1—N2—H2A114.6 (14)
C11—C16—H16119.7C1—N2—H2B122.6 (14)
C22—C21—C26118.51 (16)H2A—N2—H2B123 (2)
C22—C21—P1121.21 (13)C1—N3—H3A119.4 (14)
C26—C21—P1120.23 (13)C1—N3—H3B114.1 (14)
C23—C22—C21120.75 (17)H3A—N3—H3B124 (2)
C23—C22—H22119.6H1WA—O1W—H1WB107 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1W0.91 (2)2.09 (2)2.993 (2)169.9 (19)
N2—H2B···O10.89 (2)1.90 (2)2.7914 (19)177 (2)
N2—H2A···O2ii0.88 (2)2.11 (2)2.932 (2)153.8 (19)
N3—H3B···O2ii0.90 (2)2.04 (2)2.892 (2)156.1 (19)
N3—H3A···O1Wiii0.88 (2)1.99 (2)2.863 (2)175 (2)
O1W—H1WA···O10.86 (2)1.88 (2)2.7157 (18)164 (2)
O1W—H1WB···O2iv0.86 (2)1.86 (2)2.7061 (18)168 (2)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Loughborough University and Dorna Institute of Science for providing facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 1433–1439, and references therein.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationFülscher, M. P. & Mehler, E. L. (1988). J. Mol. Struct. Theochem. 165, 319–327.  CrossRef Google Scholar
First citationHorner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045–4048, and references therein.  CrossRef CAS Google Scholar
First citationKathó, A., Bényei, A. C., Joó, F. & Sági, M. (2002). Adv. Synth. Catal. 344, 278–282.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelo, A., Ramos, M. J., Floriano, W. B., Gomes, J. A. N. F., Leão, J. F. R., Magalhães, A. L., Maigret, B., Nascimento, M. C. & Reuter, N. (1999). J. Mol. Struct. Theochem. 463, 81–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687–o689.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSingh, J., Thornton, J. M., Snarey, M. & Campbell, S. F. (1987). FEBS Lett. 224, 161–171.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds