organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sulfa­thia­zolium nitrate monohydrate

aSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 16 March 2006; accepted 21 March 2006; online 29 March 2006)

The title compound, C9H10N3O2S2+·NO3·H2O, was obtained from a solution of sulfathiazole in dilute nitric acid at room temperature. The crystal structure is stabilized by a network of hydrogen bonds and van der Waals interactions.

Comment

Sulfathia­zole has a remarkable solvate-forming ability with inter­esting structural and conformational properties. Many solvent-containing sulfathia­zoles are known and a lot of them have been studied crystallographically (Bingham et al., 2001[Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S. & Threlfall, T. L. (2001). Chem. Commun. 7, 603-604.]).

[Scheme 1]

Shirotani et al. (1983[Shirotani, K.-I., Suzuki, E. & Sekiguchi, K. (1983). Chem. Pharm. Bull. 31, 2085-2093.]) described three solvates of sulfathia­zole and Caira et al. (1994[Caira, M. R., Griffith, V. J., Nassimbeni, L. R., Luigi, R. & Oudtshoom, B. V. (1994). J. Inclus. Phen. and Mol. Recog. in Chem. 17, 187-201.]) reported the crystal structure of the 1:1 complex of sulfathia­zole and cyclo­dextrin, in which the mol­ecules are hydrogen bonded with each other, forming a layer and these layers are linked by hydrogen bonds with water mol­ecules.

The sulfathia­zole mol­ecule in the title complex, (I)[link], is hydrogen bonded with a nitrate ion which is also hydrogen bonded with the water mol­ecule. The sulfathia­zole mol­ecule is protonated on its terminal amino group.

The planes of the benzene and thia­zole rings are inclined in a gauche conformation about the S12—N11 bond with a dihedral angle of 87.63 (6)°. The crystal structure is stabilized by a network of hydrogen bonds and van der Waals inter­actions.

[Figure 1]
Figure 1
View of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.

Experimental

Solid sulfathia­zole (0.255 g; 1 mmol) was dissolved in 1M HNO3 acid (50 ml) and stirred for 30 minutes, filtered off and the clear solution was left at room temperature for crystallization. Pale-yellow platelike crystals of sulfathia­zole nitrate were obtained by slow evaporation of the solution.

Crystal data
  • C9H10N3O2S2+·NO3·H2O

  • Mr = 336.35

  • Monoclinic, P21/c

  • a = 12.1917 (2) Å

  • b = 7.6348 (2) Å

  • c = 15.3895 (2) Å

  • β = 107.4664 (14)°

  • V = 1366.43 (5) Å3

  • Z = 4

  • Dx = 1.635 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8182 reflections

  • θ = 2.9–27.5°

  • μ = 0.42 mm−1

  • T = 120 (2) K

  • Plate, pale yellow

  • 0.34 × 0.32 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (Blessing; 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.869, Tmax = 0.979

  • 17799 measured reflections

  • 3117 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 27.5°

  • h = −15 → 15

  • k = −9 → 9

  • l = −19 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 3117 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0584P)2 + 0.5659P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

S11—C11 1.7362 (17)
S11—C12 1.732 (2)
S12—O11 1.4566 (13)
S12—O12 1.4436 (13)
S12—N11 1.5824 (15)
S12—C14 1.7740 (17)
N11—C11 1.344 (2)
N12—C11 1.335 (2)
N12—C13 1.384 (2)
N13—C17 1.462 (2)
C12—C13 1.335 (3)
C14—C15 1.381 (2)
C14—C19 1.398 (2)
C15—C16 1.392 (2)
C16—C17 1.382 (2)
C17—C18 1.382 (2)
C18—C19 1.384 (3)
C11—S11—C12 90.84 (8)
O11—S12—O12 117.06 (8)
O11—S12—N11 104.67 (8)
O12—S12—N11 114.68 (8)
O11—S12—C14 106.67 (8)
O12—S12—C14 106.87 (8)
N11—S12—C14 106.17 (8)
C11—N11—S12 120.76 (13)
C11—N12—C13 115.14 (15)
N12—C11—N11 119.41 (15)
N12—C11—S11 109.85 (12)
N11—C11—S11 130.74 (14)
C13—C12—S11 111.26 (14)
C12—C13—N12 112.90 (17)
C15—C14—C19 121.33 (15)
C15—C14—S12 120.22 (13)
C19—C14—S12 118.45 (13)
C14—C15—C16 119.52 (15)
C15—C16—C17 118.86 (15)
C16—C17—C18 121.95 (16)
C16—C17—N13 119.15 (15)
C18—C17—N13 118.90 (15)
C17—C18—C19 119.43 (16)
C14—C19—C18 118.90 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯O1 0.95 (1) 1.82 (1) 2.765 (2) 177 (2)
O4—H4A⋯O2 0.95 (1) 1.87 (1) 2.8027 (19) 170 (2)
N12—H12A⋯O4i 0.95 (1) 2.00 (1) 2.9050 (19) 159 (2)
O4—H4B⋯O11i 0.95 (1) 1.97 (1) 2.8807 (18) 162 (2)
N13—H13C⋯O11ii 0.88 (3) 2.03 (3) 2.907 (2) 176 (2)
N13—H13B⋯O4iii 0.95 (1) 1.91 (1) 2.857 (2) 175 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z.

C-bound H atoms were included in the riding model approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). H atoms attached to N and O were located in an electron density map and refined isotropically with the N—H and O—H bond lengths restrained to 0.95 (5) Å.

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Gοttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfathiazole has a remarkable solvate-forming ability with interesting structural and conformational properties. Many solvate-containing sulfathiazoles are known and a lot of them have been studied crystallographically (Bingham et al., 2001).

Shirotani et al. (1983) described three solvates of sulfathiazole and Caira et al. (1994) reported the crystal structure of the 1:1 complex of sulfathiazole and cyclodextrin where the molecules are hydrogen bonded with each other, forming a layer with these layers are linked by hydrogen bonds with water molecules.

The sulfathiazole molecule in the title complex, (I), is hydrogen bonded with a nitrate ion which is also hydrogen bonded with the water molecule present in the complex. The sulfathiazole molecule is positively charged, gaining one proton on its terminal amino group. Atoms O1 and O2 of the nitrate ion are hydrogen bonded with H13A of the amino group of sulfathiazole, and O3 is hydrogen bonded with H4A of the water molecule.

The planes of the phenyl and thiazole rings are inclined in a gauche conformation about the S12—N11 bond with a torsion angle of 87.63 (6)°. The crystal structure is stabilized by a network of hydrogen bonds and van der Waals' interactions.

In this compound, the sulfathiazole acquires a positive charge on its amino (–NH2) group, forming an [–NH3]+ cation that is balanced by the negative nitrate ion.

Experimental top

Solid sulfathiazole (0.255 g; 1 mmol) was dissolved in 1M HNO3 acid (50 ml) and stirred for 30 minutes, filtered off and the clear solution was left at room temperature for crystallization. Pale yellow platelike crystals of sulfathiazole nitrate were obtained by slow evaporation of the solution.

Refinement top

C-bound H atoms included in the riding model approximation with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). H atoms attached to N and O (water) were located from an electron density map and then restrained to those positions so that N—H (terminal amino group) was in the range 0.948 to 0.949 Å and N—H (thiazolato ring) and O—H were 0.945 Å, and refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
Fig. 1. View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2. The packing of the complex
(I) top
Crystal data top
C9H10N3O2S2+·NO3·H2OF(000) = 696
Mr = 336.35Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8182 reflections
a = 12.1917 (2) Åθ = 2.9–27.5°
b = 7.6348 (2) ŵ = 0.42 mm1
c = 15.3895 (2) ÅT = 120 K
β = 107.466 (1)°Platelike, pale yellow
V = 1366.43 (5) Å30.34 × 0.32 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3117 independent reflections
Radiation source: fine-focus sealed tube2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
Blessing (1995)
h = 1515
Tmin = 0.869, Tmax = 0.979k = 99
17799 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.5659P]
where P = (Fo2 + 2Fc2)/3
3117 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.47 e Å3
5 restraintsΔρmin = 0.61 e Å3
Crystal data top
C9H10N3O2S2+·NO3·H2OV = 1366.43 (5) Å3
Mr = 336.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1917 (2) ŵ = 0.42 mm1
b = 7.6348 (2) ÅT = 120 K
c = 15.3895 (2) Å0.34 × 0.32 × 0.05 mm
β = 107.466 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3117 independent reflections
Absorption correction: multi-scan
Blessing (1995)
2669 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.979Rint = 0.081
17799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0385 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
3117 reflectionsΔρmin = 0.61 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S111.03911 (4)0.33588 (6)0.62604 (3)0.02120 (14)
S120.80044 (4)0.12718 (6)0.62170 (3)0.01730 (13)
O110.70722 (11)0.07178 (17)0.65647 (8)0.0214 (3)
O120.90388 (11)0.02267 (17)0.64704 (8)0.0233 (3)
N110.81921 (13)0.32750 (19)0.64842 (10)0.0181 (3)
N120.91621 (12)0.5878 (2)0.64833 (9)0.0172 (3)
H12A0.8512 (12)0.648 (2)0.6541 (15)0.028 (6)*
N130.61384 (13)0.1154 (2)0.21568 (10)0.0190 (3)
H13A0.5326 (5)0.121 (3)0.2005 (17)0.039 (7)*
H13B0.6352 (18)0.0138 (17)0.1891 (13)0.025 (5)*
H13C0.641 (2)0.208 (4)0.1947 (17)0.041 (7)*
C110.91245 (14)0.4134 (2)0.64160 (11)0.0168 (3)
C121.09071 (15)0.5476 (3)0.62748 (12)0.0218 (4)
H121.16310.57680.62010.026*
C131.01555 (15)0.6644 (2)0.64025 (12)0.0203 (4)
H131.02890.78710.64350.024*
C140.74583 (14)0.1207 (2)0.50113 (11)0.0165 (3)
C150.80804 (14)0.0404 (2)0.45070 (12)0.0192 (4)
H150.88020.01220.48030.023*
C160.76426 (14)0.0371 (2)0.35615 (12)0.0199 (4)
H160.80580.01820.32050.024*
C170.65936 (14)0.1156 (2)0.31503 (11)0.0158 (3)
C180.59642 (15)0.1957 (3)0.36506 (12)0.0229 (4)
H180.52430.24810.33510.027*
C190.63940 (16)0.1989 (3)0.45914 (12)0.0240 (4)
H190.59730.25340.49460.029*
O10.37657 (11)0.1342 (2)0.16636 (9)0.0291 (3)
O20.42291 (11)0.1643 (2)0.04127 (9)0.0319 (4)
O30.24360 (11)0.15191 (19)0.03616 (9)0.0283 (3)
N10.34639 (13)0.1506 (2)0.08093 (10)0.0206 (3)
O40.31305 (11)0.19590 (17)0.14618 (9)0.0202 (3)
H4A0.346 (2)0.198 (3)0.0823 (4)0.047 (7)*
H4B0.308 (2)0.3159 (10)0.1620 (16)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0173 (2)0.0231 (2)0.0236 (3)0.00481 (17)0.00666 (17)0.00234 (17)
S120.0199 (2)0.0182 (2)0.0132 (2)0.00319 (16)0.00403 (16)0.00013 (15)
O110.0271 (7)0.0204 (6)0.0189 (6)0.0015 (5)0.0104 (5)0.0007 (5)
O120.0258 (7)0.0230 (7)0.0178 (6)0.0100 (5)0.0018 (5)0.0002 (5)
N110.0179 (7)0.0190 (7)0.0171 (7)0.0012 (6)0.0048 (5)0.0019 (6)
N120.0143 (7)0.0202 (8)0.0161 (7)0.0039 (6)0.0029 (5)0.0001 (6)
N130.0157 (7)0.0260 (8)0.0149 (7)0.0007 (6)0.0038 (6)0.0015 (6)
C110.0152 (8)0.0218 (9)0.0115 (8)0.0040 (7)0.0013 (6)0.0008 (6)
C120.0177 (8)0.0266 (10)0.0216 (9)0.0000 (7)0.0064 (7)0.0014 (7)
C130.0164 (8)0.0233 (9)0.0201 (9)0.0010 (7)0.0036 (7)0.0000 (7)
C140.0185 (8)0.0176 (8)0.0128 (8)0.0008 (6)0.0037 (6)0.0000 (6)
C150.0150 (8)0.0236 (9)0.0176 (8)0.0046 (7)0.0027 (6)0.0006 (7)
C160.0181 (8)0.0246 (9)0.0183 (8)0.0044 (7)0.0077 (6)0.0017 (7)
C170.0152 (8)0.0181 (8)0.0133 (8)0.0014 (6)0.0030 (6)0.0009 (6)
C180.0167 (8)0.0307 (10)0.0207 (9)0.0065 (7)0.0049 (7)0.0011 (7)
C190.0205 (9)0.0326 (11)0.0198 (9)0.0090 (8)0.0073 (7)0.0011 (7)
O10.0212 (7)0.0483 (9)0.0166 (7)0.0021 (6)0.0041 (5)0.0039 (6)
O20.0167 (6)0.0584 (10)0.0217 (7)0.0026 (6)0.0075 (5)0.0020 (6)
O30.0135 (6)0.0431 (9)0.0252 (7)0.0013 (6)0.0010 (5)0.0031 (6)
N10.0174 (7)0.0242 (8)0.0201 (8)0.0004 (6)0.0053 (6)0.0008 (6)
O40.0189 (6)0.0212 (7)0.0205 (6)0.0012 (5)0.0061 (5)0.0010 (5)
Geometric parameters (Å, º) top
S11—C111.7362 (17)C13—H130.9500
S11—C121.732 (2)C14—C151.381 (2)
S12—O111.4566 (13)C14—C191.398 (2)
S12—O121.4436 (13)C15—C161.392 (2)
S12—N111.5824 (15)C15—H150.9500
S12—C141.7740 (17)C16—C171.382 (2)
N11—C111.344 (2)C16—H160.9500
N12—C111.335 (2)C17—C181.382 (2)
N12—C131.384 (2)C18—C191.384 (3)
N12—H12A0.945 (5)C18—H180.9500
N13—C171.462 (2)C19—H190.9500
N13—H13A0.948 (5)N1—O11.261 (2)
N13—H13B0.949 (5)N1—O21.2632 (19)
N13—H13C0.88 (3)N1—O31.236 (2)
C12—C131.335 (3)O4—H4A0.945 (5)
C12—H120.9500O4—H4B0.945 (5)
C11—S11—C1290.84 (8)C12—C13—H13123.6
O11—S12—O12117.06 (8)N12—C13—H13123.6
O11—S12—N11104.67 (8)C15—C14—C19121.33 (15)
O12—S12—N11114.68 (8)C15—C14—S12120.22 (13)
O11—S12—C14106.67 (8)C19—C14—S12118.45 (13)
O12—S12—C14106.87 (8)C14—C15—C16119.52 (15)
N11—S12—C14106.17 (8)C14—C15—H15120.2
C11—N11—S12120.76 (13)C16—C15—H15120.2
C11—N12—C13115.14 (15)C15—C16—C17118.86 (15)
C11—N12—H12A119.0 (13)C17—C16—H16120.6
C13—N12—H12A125.7 (13)C15—C16—H16120.6
C17—N13—H13A107.3 (15)C16—C17—C18121.95 (16)
C17—N13—H13B112.6 (13)C16—C17—N13119.15 (15)
H13A—N13—H13B109 (2)C18—C17—N13118.90 (15)
C17—N13—H13C108.4 (17)C17—C18—C19119.43 (16)
H13A—N13—H13C110 (2)C17—C18—H18120.3
H13B—N13—H13C109 (2)C19—C18—H18120.3
N12—C11—N11119.41 (15)C14—C19—C18118.90 (16)
N12—C11—S11109.85 (12)C18—C19—H19120.5
N11—C11—S11130.74 (14)C14—C19—H19120.5
C13—C12—S11111.26 (14)O1—N1—O2119.04 (15)
C13—C12—H12124.4O1—N1—O3120.80 (15)
S11—C12—H12124.4O2—N1—O3120.16 (15)
C12—C13—N12112.90 (17)H4A—O4—H4B103 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O10.95 (1)1.82 (1)2.765 (2)177 (2)
O4—H4A···O20.95 (1)1.87 (1)2.8027 (19)170 (2)
N12—H12A···O4i0.95 (1)2.00 (1)2.9050 (19)159 (2)
O4—H4B···O11i0.95 (1)1.97 (1)2.8807 (18)162 (2)
N13—H13C···O11ii0.88 (3)2.03 (3)2.907 (2)176 (2)
N13—H13B···O4iii0.95 (1)1.91 (1)2.857 (2)175 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H10N3O2S2+·NO3·H2O
Mr336.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.1917 (2), 7.6348 (2), 15.3895 (2)
β (°) 107.466 (1)
V3)1366.43 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.34 × 0.32 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
Blessing (1995)
Tmin, Tmax0.869, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17799, 3117, 2669
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections3117
No. of parameters214
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.61

Computer programs: COLLECT (Nonius, 1997–2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S11—C111.7362 (17)N13—C171.462 (2)
S11—C121.732 (2)C12—C131.335 (3)
S12—O111.4566 (13)C14—C151.381 (2)
S12—O121.4436 (13)C14—C191.398 (2)
S12—N111.5824 (15)C15—C161.392 (2)
S12—C141.7740 (17)C16—C171.382 (2)
N11—C111.344 (2)C17—C181.382 (2)
N12—C111.335 (2)C18—C191.384 (3)
N12—C131.384 (2)
C11—S11—C1290.84 (8)C13—C12—S11111.26 (14)
O11—S12—O12117.06 (8)C12—C13—N12112.90 (17)
O11—S12—N11104.67 (8)C15—C14—C19121.33 (15)
O12—S12—N11114.68 (8)C15—C14—S12120.22 (13)
O11—S12—C14106.67 (8)C19—C14—S12118.45 (13)
O12—S12—C14106.87 (8)C14—C15—C16119.52 (15)
N11—S12—C14106.17 (8)C15—C16—C17118.86 (15)
C11—N11—S12120.76 (13)C16—C17—C18121.95 (16)
C11—N12—C13115.14 (15)C16—C17—N13119.15 (15)
N12—C11—N11119.41 (15)C18—C17—N13118.90 (15)
N12—C11—S11109.85 (12)C17—C18—C19119.43 (16)
N11—C11—S11130.74 (14)C14—C19—C18118.90 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O10.948 (5)1.818 (6)2.765 (2)177 (2)
O4—H4A···O20.945 (5)1.867 (7)2.8027 (19)170 (2)
N12—H12A···O4i0.945 (5)2.002 (9)2.9050 (19)159.3 (19)
O4—H4B···O11i0.945 (5)1.966 (9)2.8807 (18)162 (2)
N13—H13C···O11ii0.88 (3)2.03 (3)2.907 (2)176 (2)
N13—H13B···O4iii0.949 (5)1.910 (6)2.857 (2)175 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

GMGH acknowledges the Ministry of Science and Technology, Bangladesh Secretariat, Dhaka for awarding the Bangabandhu Fellowship.

References

First citationBingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S. & Threlfall, T. L. (2001). Chem. Commun. 7, 603–604. Web of Science CSD CrossRef
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals
First citationCaira, M. R., Griffith, V. J., Nassimbeni, L. R., Luigi, R. & Oudtshoom, B. V. (1994). J. Inclus. Phen. and Mol. Recog. in Chem. 17, 187–201. CSD CrossRef CAS Web of Science
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (1997). SHELXL97. University of Gοttingen, Germany.
First citationShirotani, K.-I., Suzuki, E. & Sekiguchi, K. (1983). Chem. Pharm. Bull. 31, 2085–2093. CrossRef CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds