metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of bis­­(2-amino-3-hydr­­oxy-1-phenyl­propanolato-κ2N,O1)(ethylenedi­amine-κ2N,N′)cobalt(III) iodide monohydrate

CROSSMARK_Color_square_no_text.svg

aRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA, bDepartment of Chemistry, PO Box 30012, Texas A&M University, College Station, TX 77842-3012, USA, and cDepartment of Chemistry, PO Box 70695, East Tennessee State University, Johnson City, TN 37614-0695, USA
*Correspondence e-mail: ldaniels@Rigaku.com

(Received 17 February 2006; accepted 27 February 2006; online 8 March 2006)

New data for the title complex, [Co(C9H12NO2)2(C2H8N2)]I·H2O, allow the modelling of previously unresolved disorder [Wardeska et al. (1979[Wardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641-1648.]). Inorg. Chem. 18, 1641–1648] in the ethyl­enediamine ligand coordinated to the octa­hedral cation.

Comment

The title complex, (I)[link], was synthesized and crystallized in about 1978, and its structure published the following year as part of a synthetic and spectroscopic project (Wardeska et al., 1979[Wardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641-1648.]). Crystals of this obviously robust material were recently rediscovered in perfect condition after 28 years in a glass vial and its structure has been redetermined in order to resolve some disorder in the earlier determination.

[Scheme 1]

While the structure in the original report gave very good residuals, the disorder in the ethyl­enediamine ligand was not resolved and the determination of the absolute structure was based only on a comparison of the R values given by the correct versus the inverted structure. We also take this opportunity to present the first published structure from data collected on a new type of single-crystal diffraction instrument, the Rigaku SCXmini Benchtop Crystallography System. This structure was used as a test of the efficacy of this new paradigm for crystallographic instrumentation.

As shown in Fig. 1[link], there are two distinct conformations of the ethyl­enediamine ligand. The occupancy of the major orientation (specified by the letter A) refined to 0.66 (1).

The mol­ecular structure of the cation (Table 1[link]) and the hydrogen-bonding scheme (Table 2[link]) involving all components of the unit-cell contents, are, of course, similar to those originally described in detail by Wardeska et al. (1979[Wardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641-1648.]), although in the present determination the positions of the O-bound H atoms were fully refined.

[Figure 1]
Figure 1
A view of the cation in (I)[link]. The atoms and bonds in the minor orientation of the disordered ethyl­enediamine ligand are shown with dashed lines.

Experimental

The title compound was synthesized from a methanol–water solution of (1S,2S)-(+)-1-phenyl-2-amino-1,3-dihydroxy­propane to which was added sodium hexa­nitro­cobaltate(III). The resulting solids were dissolved in a 2:1 methanol–water solution and treated with ethylene­diamine, warmed, filtered, and then converted to the iodide salt by recrystallizing twice from potassium iodide solution. The complete experimental preparation is described by Wardeska et al. (1979[Wardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641-1648.]).

Crystal data
  • [Co(C9H12NO2)2(C2H8N2)]I·H2O

  • Mr = 596.34

  • Orthorhombic, P 21 21 21

  • a = 6.7895 (2) Å

  • b = 14.5013 (4) Å

  • c = 24.8565 (8) Å

  • V = 2447.29 (13) Å3

  • Z = 4

  • Dx = 1.619 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 19448 reflections

  • θ = 3.0–27.5°

  • μ = 2.00 mm−1

  • T = 294 (2) K

  • Prism, translucent pale-brown

  • 0.42 × 0.39 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • ω scans

  • Absorption correction: multi-scan(ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])Tmin = 0.466, Tmax = 0.57

  • 19627 measured reflections

  • 5482 independent reflections

  • 5172 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 27.5°

  • h = −8 → 8

  • k = −13 → 18

  • l = −30 → 32

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.062

  • S = 1.10

  • 5482 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.022P)2 + P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2272 Friedel pairs

  • Flack parameter: 0.007 (14)

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.8793 (17)
Co1—O2 1.9002 (18)
Co1—N2 1.9456 (19)
Co1—N4 1.955 (2)
Co1—N1A 1.973 (2)
Co1—N3A 1.987 (2)
O1—Co1—O2 93.18 (8)
O1—Co1—N2 85.45 (8)
O1—Co1—N4 87.21 (8)
O1—Co1—N1A 90.85 (8)
O1—Co1—N3A 175.03 (9)
O2—Co1—N2 88.43 (8)
O2—Co1—N4 85.83 (8)
O2—Co1—N1A 175.95 (9)
O2—Co1—N3A 91.74 (9)
N2—Co1—N4 170.41 (9)
N2—Co1—N1A 92.23 (10)
N2—Co1—N3A 93.98 (9)
N4—Co1—N1A 94.03 (9)
N4—Co1—N3A 93.87 (9)
N1A—Co1—N3A 84.23 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.899 (17) 1.73 (2) 2.594 (2) 159 (3)
O5—H2W⋯O4 0.906 (19) 1.99 (3) 2.792 (3) 146 (5)
O5—H1W⋯I1 0.90 (3) 2.91 (4) 3.639 (3) 140 (5)
O3—H3⋯O1ii 0.919 (18) 1.83 (2) 2.714 (3) 160 (4)
N1A—H1A1⋯I1iii 0.90 3.26 4.078 (2) 152
N1A—H1A2⋯I1iv 0.90 2.92 3.709 (2) 147
N3A—H3A1⋯I1 0.90 2.90 3.697 (2) 149
N3A—H3A2⋯O4ii 0.90 2.35 3.094 (3) 140
N3A—H3A2⋯O5ii 0.90 2.57 3.368 (4) 148
N1B—H1B2⋯I1iv 0.90 2.91 3.709 (2) 148
N3B—H3B1⋯I1 0.90 2.87 3.697 (2) 154
N3B—H3B2⋯O5ii 0.90 2.61 3.368 (4) 142
N3B—H3B2⋯O4ii 0.90 2.66 3.094 (3) 111
N2—H2A⋯I1iii 0.90 2.80 3.632 (2) 155
N4—H4A⋯O5 0.90 2.34 3.139 (4) 149
N4—H4B⋯O3i 0.90 2.41 3.219 (3) 149
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The positions of the H atoms bonded to O atoms were fully refined. All other H atoms were placeed in idealized positions, with C—H = 0.98 (methine), 0.93 (phen­yl) or 0.97 Å (methyl­ene), and N—H = 0.90 Å. Uiso(H) values were set to 1.2Ueq(C,N) or 1.5Ueq(O). For the disordered group, only the positions of the two C atoms were split; the N positions were not distinct enough to allow modelling over two positions. The isotropic displacement parameters for disordered atoms C7A and C7B were constrained to be equal, as were those for C8A and C8B. The error in the C—C distance introduced by the disorder is greatly reduced in this resolved model compared with that in the earlier report. When these disordered C atoms are not resolved and they are allowed to refine anisotropically, the resulting apparent C—C distance is 1.395 (10) Å (Wardeska et al., 1979[Wardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641-1648.]). The present refinement allows for two separate positions for this C—C group, and the distances refine to 1.506 (6) Å for the A group and 1.497 (10) Å for the lower-occupancy B group (i.e. statistically indistinguishable at the 2σ level).

Data collection: SCXmini (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Version 1.0. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.]); molecular graphics: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalStructure. Version 3.7. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SCXmini (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku, 2005); software used to prepare material for publication: SHELXL97.

bis(2-amino-3-hydroxy-1-phenylpropanolato-κ2N,O1)(ethylenediamine- κ2N,N')cobalt(III) iodide monohydrate top
Crystal data top
[Co(C9H12NO2)2(C2H8N2)]I·H2OF(000) = 1208
Mr = 596.34Dx = 1.619 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 21 21 21Cell parameters from 19448 reflections
a = 6.7895 (2) Åθ = 3.0–27.5°
b = 14.5013 (4) ŵ = 2.00 mm1
c = 24.8565 (8) ÅT = 294 K
V = 2447.29 (13) Å3Prism, translucent pale-brown
Z = 40.42 × 0.39 × 0.28 mm
Data collection top
Rigaku SCXmini
diffractometer
5482 independent reflections
Radiation source: long-fine-focus sealed tube5172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 6.85 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1318
Tmin = 0.466, Tmax = 0.57l = 3032
19627 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.022P)2 + P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
5482 reflectionsΔρmax = 0.58 e Å3
291 parametersΔρmin = 0.69 e Å3
215 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.24806 (3)1.289623 (13)0.701876 (8)0.05308 (7)
Co10.21430 (5)0.93696 (2)0.673829 (13)0.02590 (7)
O40.8157 (3)1.08284 (14)0.62835 (8)0.0383 (4)
H40.930 (3)1.062 (2)0.6145 (12)0.042 (8)*
O50.6808 (5)1.1481 (2)0.72736 (12)0.0804 (9)
H2W0.739 (7)1.151 (4)0.6947 (11)0.121*
H1W0.571 (5)1.175 (3)0.740 (2)0.121*
O10.3046 (2)0.83092 (11)0.63805 (7)0.0294 (4)
O30.3187 (3)0.81759 (15)0.60232 (9)0.0474 (5)
H30.441 (3)0.809 (3)0.6175 (14)0.071*
O20.1432 (2)0.99710 (12)0.60874 (7)0.0301 (4)
N1A0.2831 (3)0.88261 (14)0.74411 (8)0.0357 (5)0.657 (6)
H1A10.19100.84130.75400.043*0.657 (6)
H1A20.39990.85350.74190.043*0.657 (6)
N3A0.1217 (3)1.04309 (15)0.71760 (9)0.0369 (5)0.657 (6)
H3A10.20141.09170.71190.044*0.657 (6)
H3A20.00061.05890.70720.044*0.657 (6)
N1B0.2831 (3)0.88261 (14)0.74411 (8)0.0357 (5)0.343 (6)
H1B10.22800.82630.74630.043*0.343 (6)
H1B20.41460.87510.74550.043*0.343 (6)
N3B0.1217 (3)1.04309 (15)0.71760 (9)0.0369 (5)0.343 (6)
H3B10.15551.09660.70170.044*0.343 (6)
H3B20.01011.04150.72110.044*0.343 (6)
N20.0417 (3)0.87671 (13)0.67324 (9)0.0286 (4)
H2A0.09110.87540.70680.034*
H2B0.12540.90890.65230.034*
N40.4763 (3)0.98935 (14)0.66224 (8)0.0282 (4)
H4A0.51351.02160.69150.034*
H4B0.56410.94380.65700.034*
C10.1466 (3)0.78521 (18)0.61191 (10)0.0288 (5)
H10.10540.82160.58060.035*
C20.0230 (3)0.78085 (17)0.65230 (11)0.0293 (5)
H20.01690.74080.68210.035*
C150.2218 (4)0.69206 (16)0.59293 (10)0.0312 (5)
C160.2528 (5)0.61960 (17)0.62874 (11)0.0431 (6)
H160.22110.62660.66490.052*
C170.3307 (5)0.5371 (2)0.61045 (15)0.0540 (9)
H170.34670.48820.63430.065*
C180.3844 (5)0.5268 (2)0.55766 (15)0.0560 (9)
H180.43800.47130.54580.067*
C190.3591 (6)0.5977 (2)0.52268 (15)0.0568 (9)
H190.39810.59090.48700.068*
C200.2757 (5)0.67989 (19)0.53957 (11)0.0453 (7)
H200.25580.72730.51500.054*
C50.4717 (3)1.05122 (18)0.61421 (10)0.0271 (5)
H50.43021.11300.62550.033*
C30.2219 (4)0.74665 (18)0.63105 (12)0.0403 (6)
H3A0.20140.69410.60760.048*
H3B0.30360.72700.66090.048*
C90.2787 (4)1.07077 (16)0.52822 (9)0.0294 (5)
C140.1607 (4)1.14859 (19)0.52991 (12)0.0371 (6)
H140.09621.16420.56160.045*
C130.1378 (4)1.2035 (2)0.48459 (14)0.0465 (7)
H130.05541.25470.48590.056*
C120.2360 (5)1.1829 (2)0.43779 (12)0.0512 (8)
H120.22081.22010.40760.061*
C110.3566 (5)1.1070 (2)0.43583 (12)0.0500 (8)
H110.42571.09370.40450.060*
C100.3762 (4)1.0500 (2)0.48032 (11)0.0404 (6)
H100.45480.99760.47820.048*
C60.6744 (3)1.05765 (19)0.58866 (10)0.0317 (5)
H6A0.70980.99870.57300.038*
H6B0.67291.10340.56020.038*
C40.3141 (3)1.01045 (16)0.57716 (10)0.0279 (5)
H4C0.36000.95000.56470.034*
C7A0.2942 (8)0.9589 (3)0.78466 (19)0.0429 (10)*0.657 (6)
H7A10.41620.99290.78060.051*0.657 (6)
H7A20.28860.93400.82090.051*0.657 (6)
C8A0.1202 (9)1.0209 (4)0.77437 (19)0.0448 (10)*0.657 (6)
H8A10.00130.98970.78390.054*0.657 (6)
H8A20.13071.07660.79570.054*0.657 (6)
C7B0.2222 (16)0.9357 (6)0.7904 (3)0.0429 (10)*0.343 (6)
H7B10.31180.92520.82010.051*0.343 (6)
H7B20.09090.91750.80150.051*0.343 (6)
C8B0.2241 (19)1.0347 (5)0.7749 (3)0.0448 (10)*0.343 (6)
H8B10.35851.05730.77310.054*0.343 (6)
H8B20.15281.07110.80120.054*0.343 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05905 (14)0.04394 (11)0.05623 (12)0.00603 (12)0.01004 (12)0.00782 (8)
Co10.02083 (15)0.02368 (14)0.03319 (15)0.00013 (13)0.00077 (13)0.00319 (12)
O40.0212 (9)0.0493 (11)0.0442 (11)0.0008 (8)0.0001 (8)0.0009 (9)
O50.071 (2)0.102 (2)0.0673 (18)0.0044 (17)0.0020 (15)0.0235 (17)
O10.0201 (9)0.0284 (8)0.0397 (9)0.0000 (7)0.0017 (7)0.0011 (7)
O30.0312 (11)0.0498 (12)0.0613 (13)0.0049 (9)0.0030 (10)0.0091 (10)
O20.0182 (8)0.0349 (10)0.0374 (10)0.0007 (7)0.0008 (7)0.0081 (8)
N1A0.0300 (12)0.0387 (11)0.0383 (11)0.0002 (11)0.0025 (10)0.0069 (9)
N3A0.0307 (12)0.0318 (12)0.0481 (14)0.0000 (9)0.0028 (10)0.0005 (10)
N1B0.0300 (12)0.0387 (11)0.0383 (11)0.0002 (11)0.0025 (10)0.0069 (9)
N3B0.0307 (12)0.0318 (12)0.0481 (14)0.0000 (9)0.0028 (10)0.0005 (10)
N20.0212 (10)0.0273 (10)0.0375 (11)0.0016 (8)0.0039 (9)0.0019 (9)
N40.0236 (10)0.0272 (10)0.0337 (11)0.0013 (8)0.0006 (8)0.0036 (9)
C10.0241 (12)0.0294 (12)0.0328 (13)0.0006 (11)0.0012 (10)0.0054 (11)
C20.0235 (12)0.0246 (11)0.0397 (14)0.0001 (10)0.0006 (10)0.0022 (11)
C150.0246 (12)0.0334 (11)0.0357 (12)0.0017 (11)0.0001 (11)0.0017 (9)
C160.0481 (17)0.0389 (13)0.0422 (14)0.0119 (16)0.0066 (16)0.0038 (11)
C170.056 (2)0.0372 (16)0.069 (2)0.0143 (14)0.0014 (16)0.0037 (15)
C180.0459 (19)0.0424 (17)0.080 (3)0.0035 (15)0.0101 (17)0.0226 (18)
C190.063 (2)0.059 (2)0.0489 (19)0.0081 (17)0.0134 (16)0.0207 (16)
C200.0544 (19)0.0433 (14)0.0380 (14)0.0080 (16)0.0038 (15)0.0040 (11)
C50.0192 (11)0.0264 (12)0.0358 (13)0.0003 (10)0.0016 (9)0.0054 (11)
C30.0271 (14)0.0319 (12)0.0619 (17)0.0030 (12)0.0009 (14)0.0002 (12)
C90.0228 (11)0.0331 (11)0.0325 (11)0.0017 (12)0.0034 (10)0.0023 (9)
C140.0344 (14)0.0350 (14)0.0420 (15)0.0013 (11)0.0035 (12)0.0076 (12)
C130.0398 (16)0.0389 (16)0.061 (2)0.0048 (14)0.0013 (14)0.0165 (15)
C120.053 (2)0.0556 (17)0.0450 (16)0.0007 (18)0.0038 (16)0.0191 (13)
C110.0536 (19)0.065 (2)0.0309 (15)0.0033 (17)0.0015 (13)0.0038 (14)
C100.0395 (15)0.0459 (16)0.0356 (14)0.0052 (13)0.0034 (12)0.0006 (13)
C60.0227 (12)0.0356 (13)0.0367 (14)0.0001 (11)0.0016 (10)0.0055 (11)
C40.0204 (12)0.0270 (11)0.0364 (13)0.0007 (10)0.0007 (10)0.0022 (10)
Geometric parameters (Å, º) top
Co1—O11.8793 (17)C17—H170.9300
Co1—O21.9002 (18)C18—C191.357 (5)
Co1—N21.9456 (19)C18—H180.9300
Co1—N41.955 (2)C19—C201.385 (4)
Co1—N1A1.973 (2)C19—H190.9300
Co1—N3A1.987 (2)C20—H200.9300
O4—C61.424 (3)C5—C61.519 (3)
O4—H40.899 (17)C5—C41.531 (3)
O5—H2W0.91 (2)C5—H50.9800
O5—H1W0.90 (3)C3—H3A0.9700
O1—C11.419 (3)C3—H3B0.9700
O3—C31.414 (3)C9—C141.384 (4)
O3—H30.919 (18)C9—C101.395 (4)
O2—C41.415 (3)C9—C41.517 (3)
N1A—C7A1.498 (5)C14—C131.389 (4)
N1A—H1A10.9000C14—H140.9300
N1A—H1A20.9000C13—C121.374 (4)
N3A—C8A1.448 (5)C13—H130.9300
N3A—H3A10.9000C12—C111.373 (4)
N3A—H3A20.9000C12—H120.9300
N2—C21.490 (3)C11—C101.387 (4)
N2—H2A0.9000C11—H110.9300
N2—H2B0.9000C10—H100.9300
N4—C51.494 (3)C6—H6A0.9700
N4—H4A0.9000C6—H6B0.9700
N4—H4B0.9000C4—H4C0.9800
C1—C151.519 (3)C7A—C8A1.506 (6)
C1—C21.529 (3)C7A—H7A10.9700
C1—H10.9800C7A—H7A20.9700
C2—C31.532 (4)C8A—H8A10.9700
C2—H20.9800C8A—H8A20.9700
C15—C201.387 (4)C7B—C8B1.487 (10)
C15—C161.393 (3)C7B—H7B10.9700
C16—C171.385 (4)C7B—H7B20.9700
C16—H160.9300C8B—H8B10.9700
C17—C181.370 (5)C8B—H8B20.9700
O1—Co1—O293.18 (8)C17—C18—H18120.1
O1—Co1—N285.45 (8)C18—C19—C20120.6 (3)
O1—Co1—N487.21 (8)C18—C19—H19119.7
O1—Co1—N1A90.85 (8)C20—C19—H19119.7
O1—Co1—N3A175.03 (9)C19—C20—C15120.5 (3)
O2—Co1—N288.43 (8)C19—C20—H20119.8
O2—Co1—N485.83 (8)C15—C20—H20119.8
O2—Co1—N1A175.95 (9)N4—C5—C6110.6 (2)
O2—Co1—N3A91.74 (9)N4—C5—C4105.27 (19)
N2—Co1—N4170.41 (9)C6—C5—C4113.9 (2)
N2—Co1—N1A92.23 (10)N4—C5—H5109.0
N2—Co1—N3A93.98 (9)C6—C5—H5109.0
N4—Co1—N1A94.03 (9)C4—C5—H5109.0
N4—Co1—N3A93.87 (9)O3—C3—C2110.4 (2)
N1A—Co1—N3A84.23 (9)O3—C3—H3A109.6
C6—O4—H4103 (2)C2—C3—H3A109.6
H2W—O5—H1W131 (5)O3—C3—H3B109.6
C1—O1—Co1110.63 (14)C2—C3—H3B109.6
C3—O3—H396 (2)H3A—C3—H3B108.1
C4—O2—Co1109.08 (14)C14—C9—C10118.4 (2)
C7A—N1A—Co1108.2 (2)C14—C9—C4122.5 (2)
C7A—N1A—H1A1110.1C10—C9—C4119.0 (2)
Co1—N1A—H1A1110.1C9—C14—C13120.5 (3)
C7A—N1A—H1A2110.1C9—C14—H14119.7
Co1—N1A—H1A2110.1C13—C14—H14119.7
H1A1—N1A—H1A2108.4C12—C13—C14120.5 (3)
C8A—N3A—Co1111.3 (2)C12—C13—H13119.7
C8A—N3A—H3A1109.4C14—C13—H13119.7
Co1—N3A—H3A1109.4C11—C12—C13119.6 (3)
C8A—N3A—H3A2109.4C11—C12—H12120.2
Co1—N3A—H3A2109.4C13—C12—H12120.2
H3A1—N3A—H3A2108.0C12—C11—C10120.4 (3)
C2—N2—Co1110.22 (14)C12—C11—H11119.8
C2—N2—H2A109.6C10—C11—H11119.8
Co1—N2—H2A109.6C11—C10—C9120.4 (3)
C2—N2—H2B109.6C11—C10—H10119.8
Co1—N2—H2B109.6C9—C10—H10119.8
H2A—N2—H2B108.1O4—C6—C5109.7 (2)
C5—N4—Co1109.41 (14)O4—C6—H6A109.7
C5—N4—H4A109.8C5—C6—H6A109.7
Co1—N4—H4A109.8O4—C6—H6B109.7
C5—N4—H4B109.8C5—C6—H6B109.7
Co1—N4—H4B109.8H6A—C6—H6B108.2
H4A—N4—H4B108.2O2—C4—C9113.18 (19)
O1—C1—C15107.69 (19)O2—C4—C5107.0 (2)
O1—C1—C2106.8 (2)C9—C4—C5111.8 (2)
C15—C1—C2114.8 (2)O2—C4—H4C108.3
O1—C1—H1109.1C9—C4—H4C108.3
C15—C1—H1109.1C5—C4—H4C108.3
C2—C1—H1109.1N1A—C7A—C8A106.7 (4)
N2—C2—C1104.8 (2)N1A—C7A—H7A1110.4
N2—C2—C3110.3 (2)C8A—C7A—H7A1110.4
C1—C2—C3116.8 (2)N1A—C7A—H7A2110.4
N2—C2—H2108.2C8A—C7A—H7A2110.4
C1—C2—H2108.2H7A1—C7A—H7A2108.6
C3—C2—H2108.2N3A—C8A—C7A107.0 (4)
C20—C15—C16118.4 (2)N3A—C8A—H8A1110.3
C20—C15—C1119.9 (2)C7A—C8A—H8A1110.3
C16—C15—C1121.5 (2)N3A—C8A—H8A2110.3
C17—C16—C15120.0 (3)C7A—C8A—H8A2110.3
C17—C16—H16120.0H8A1—C8A—H8A2108.6
C15—C16—H16120.0C8B—C7B—H7B1110.1
C18—C17—C16120.7 (3)C8B—C7B—H7B2110.1
C18—C17—H17119.6H7B1—C7B—H7B2108.5
C16—C17—H17119.6C7B—C8B—H8B1110.2
C19—C18—C17119.8 (3)C7B—C8B—H8B2110.2
C19—C18—H18120.1H8B1—C8B—H8B2108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.90 (2)1.73 (2)2.594 (2)159 (3)
O5—H2W···O40.91 (2)1.99 (3)2.792 (3)146 (5)
O5—H1W···I10.90 (3)2.91 (4)3.639 (3)140 (5)
O3—H3···O1ii0.92 (2)1.83 (2)2.714 (3)160 (4)
N1A—H1A1···I1iii0.903.264.078 (2)152
N1A—H1A2···I1iv0.902.923.709 (2)147
N3A—H3A1···I10.902.903.697 (2)149
N3A—H3A2···O4ii0.902.353.094 (3)140
N3A—H3A2···O5ii0.902.573.368 (4)148
N1B—H1B2···I1iv0.902.913.709 (2)148
N3B—H3B1···I10.902.873.697 (2)154
N3B—H3B2···O5ii0.902.613.368 (4)142
N3B—H3B2···O4ii0.902.663.094 (3)111
N2—H2A···I1iii0.902.803.632 (2)155
N4—H4A···O50.902.343.139 (4)149
N4—H4B···O3i0.902.413.219 (3)149
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Katsunari Sasaki, Joseph D. Ferrara and Hugh F. Garvey for their roles in the design, development, and production of the Rigaku SCXmini benchtop crystallography system.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalStructure. Version 3.7. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Version 1.0. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.  Google Scholar
First citationSheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWardeska, J. G., Clearfield, A. & Troup, J. M. (1979). Inorg. Chem. 18, 1641–1648.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds