organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro-3,4-di­nitro­benzene–1,4-dioxane (1/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: sarah.barnett@ucl.ac.uk

(Received 21 March 2006; accepted 28 March 2006; online 31 March 2006)

The solvate structure of 1-chloro-3,4-dinitro­benzene with 1,4-dioxane, C6H3ClN2O4·C4H8N2, is reported. Alternating mol­ecules of 3,4-dinitro-1-chloro­benzene and 1,4-dioxane are linked by C—H⋯O hydrogen bonds into a continuous two-dimensional sheet.

Comment

The title compound, (I)[link], was produced during an experimental crystallization polymorph screen on 1-chloro-3,4-dinitro­benzene (3,4-DNCB). Compound (I)[link] crystallizes in the space group P[\overline{1}] with one mol­ecule of 3,4-DNCB and one mol­ecule of 1,4-dioxane in the asymmetric unit (Fig. 1[link]).

[Scheme 1]

The crystal structure of (I)[link] is characterized by alternating mol­ecules of 3,4-DNCB and 1,4-dioxane, linked by a series of C—H⋯O hydrogen bonds (Table 1[link]) into a continuous two-dimensional sheet which lies parallel to the (11[\overline{1}]) plane (Fig. 2[link]). Alternating 3,4-DNCB mol­ecules and 1,4-dioxane are linked by pairwise C—H⋯O hydrogen bonds, forming a chain which runs parallel to the body diagonal (111). These chains are then hydrogen-bonded together, forming a sheet via two C—H⋯O inter­actions between two 3,4-DNCB mol­ecules and one C—H⋯O inter­action between the 3,4-DNCB mol­ecule and a 1,4-dioxane mol­ecule of the adjacent chain. Viewing the crystal structure down the a axis reveals that there are alternating layers of 3,4-DNCB and 1,4-dioxane (Fig. 3[link]).

[Figure 1]
Figure 1
The structure of the asymmetric unit of (I)[link], showing the numbering scheme used. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The two-dimensional network formed by compound (I)[link], showing the inter­molecular inter­actions as thin pale-blue lines. Key: C grey, N blue, O red, Cl green and H black.
[Figure 3]
Figure 3
Packing diagram, showing the stacking of the sheets. C—H⋯O inter­actions are shown as thin pale-blue lines. Key: C grey, N blue, O red, Cl green and H black.

Experimental

The title compound was recrystallized from 1,4-dioxane solution by slow evaporation at 298 K.

Crystal data
  • C6H3ClN2O4·C4H8O2

  • Mr = 290.66

  • Triclinic, [P \overline 1]

  • a = 8.2976 (12) Å

  • b = 8.7112 (13) Å

  • c = 8.8015 (13) Å

  • α = 103.661 (2)°

  • β = 103.909 (2)°

  • γ = 91.718 (2)°

  • V = 597.52 (15) Å3

  • Z = 2

  • Dx = 1.616 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3669 reflections

  • θ = 2.5–28.2°

  • μ = 0.35 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.86 × 0.67 × 0.45 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Narrow–frame ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.856

  • 4424 measured reflections

  • 2650 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.014

  • θmax = 28.2°

  • h = −10 → 10

  • k = −11 → 11

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.07

  • 2647 reflections

  • 216 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1587P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5 0.938 (15) 2.331 (15) 3.2553 (14) 168.3 (13)
C5—H5⋯O4i 0.969 (17) 2.697 (18) 3.6166 (16) 158.7 (13)
C6—H6⋯O6ii 0.949 (15) 2.468 (15) 3.4017 (14) 168.1 (12)
C7—H7B⋯O4 0.990 (17) 2.624 (17) 3.4618 (16) 142.5 (13)
C8—H8B⋯O1iii 0.996 (19) 2.446 (18) 3.2604 (16) 138.6 (13)
C9—H9B⋯O3iv 0.951 (18) 2.649 (18) 3.5930 (16) 172.3 (14)
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z-1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

H atoms were located in a difference Fourier map and refined freely [C—H = 0.938 (15)–0.996 (19) Å]. The three reflections with the greatest discrepancies were omitted from the refinement.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 & SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 & SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) and MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

4-Chloro-1,2-dinitrobenzene–1,4-dioxane (1/1) top
Crystal data top
C6H3ClN2O4·C4H8O2Z = 2
Mr = 290.66F(000) = 300
Triclinic, P1Dx = 1.616 Mg m3
a = 8.2976 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7112 (13) ÅCell parameters from 3669 reflections
c = 8.8015 (13) Åθ = 2.5–28.2°
α = 103.661 (2)°µ = 0.35 mm1
β = 103.909 (2)°T = 150 K
γ = 91.718 (2)°Block, yellow
V = 597.52 (15) Å30.86 × 0.67 × 0.45 mm
Data collection top
Bruker SMART APEX
diffractometer
2650 independent reflections
Radiation source: fine-focus sealed tube2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Narrow–frame ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.738, Tmax = 0.856k = 1111
4424 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: Direct methods
Least-squares matrix: fullSecondary atom site location: Difference Fourier synthesis
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: Found from delta-F
wR(F2) = 0.084All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1587P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01692 (14)0.14991 (13)0.38735 (13)0.0189 (2)
C20.13820 (13)0.25986 (13)0.49998 (13)0.0182 (2)
C30.09882 (14)0.37166 (13)0.62157 (13)0.0198 (2)
H30.1791 (19)0.4482 (18)0.6968 (18)0.024 (4)*
C40.06714 (14)0.36928 (13)0.62793 (13)0.0205 (2)
C50.18948 (14)0.25951 (15)0.51873 (14)0.0233 (2)
H50.304 (2)0.262 (2)0.526 (2)0.035 (4)*
C60.14693 (14)0.14773 (14)0.39675 (14)0.0218 (2)
H60.2275 (19)0.0712 (18)0.3186 (18)0.022 (3)*
Cl10.11770 (4)0.50731 (4)0.78178 (4)0.02978 (11)
N10.05511 (12)0.04236 (11)0.24729 (11)0.0204 (2)
O10.00297 (12)0.09537 (10)0.21122 (11)0.0300 (2)
O20.13920 (12)0.09876 (11)0.17386 (10)0.0295 (2)
N20.31546 (12)0.25335 (12)0.50183 (11)0.0217 (2)
O30.36588 (11)0.12279 (11)0.46586 (11)0.0301 (2)
O40.40217 (11)0.37924 (11)0.54379 (12)0.0318 (2)
C70.50812 (15)0.71687 (15)0.86037 (14)0.0265 (3)
H7A0.512 (2)0.821 (2)0.8349 (19)0.034 (4)*
H7B0.533 (2)0.635 (2)0.772 (2)0.036 (4)*
C80.62967 (15)0.72245 (16)1.01944 (15)0.0264 (3)
H8A0.6304 (19)0.6196 (19)1.0408 (18)0.026 (4)*
H8B0.746 (2)0.756 (2)1.020 (2)0.040 (4)*
C90.42101 (16)0.79512 (16)1.15303 (14)0.0273 (3)
H9A0.414 (2)0.695 (2)1.1806 (18)0.029 (4)*
H9B0.398 (2)0.875 (2)1.237 (2)0.039 (4)*
C100.29983 (16)0.78846 (16)0.99319 (15)0.0272 (3)
H10A0.297 (2)0.891 (2)0.970 (2)0.037 (4)*
H10B0.186 (2)0.757 (2)0.991 (2)0.035 (4)*
O50.34241 (11)0.67501 (10)0.86581 (10)0.0258 (2)
O60.58807 (11)0.83433 (11)1.14873 (10)0.0273 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (5)0.0180 (5)0.0177 (5)0.0016 (4)0.0039 (4)0.0044 (4)
C20.0155 (5)0.0194 (5)0.0203 (5)0.0011 (4)0.0046 (4)0.0058 (4)
C30.0193 (5)0.0190 (5)0.0204 (5)0.0002 (4)0.0045 (4)0.0046 (4)
C40.0223 (5)0.0211 (5)0.0207 (5)0.0051 (4)0.0083 (4)0.0068 (4)
C50.0170 (5)0.0298 (6)0.0248 (5)0.0025 (4)0.0055 (4)0.0099 (5)
C60.0179 (5)0.0246 (6)0.0211 (5)0.0012 (4)0.0014 (4)0.0067 (4)
Cl10.02999 (17)0.03041 (18)0.02956 (17)0.00620 (12)0.01481 (12)0.00096 (12)
N10.0198 (4)0.0199 (5)0.0190 (4)0.0023 (3)0.0018 (3)0.0031 (4)
O10.0339 (5)0.0195 (4)0.0312 (4)0.0023 (3)0.0049 (4)0.0000 (3)
O20.0367 (5)0.0284 (5)0.0260 (4)0.0016 (4)0.0151 (4)0.0047 (3)
N20.0168 (4)0.0261 (5)0.0198 (4)0.0005 (4)0.0047 (3)0.0017 (4)
O30.0229 (4)0.0300 (5)0.0334 (5)0.0083 (3)0.0067 (4)0.0005 (4)
O40.0217 (4)0.0307 (5)0.0390 (5)0.0074 (4)0.0089 (4)0.0010 (4)
C70.0261 (6)0.0276 (6)0.0228 (5)0.0011 (5)0.0077 (5)0.0002 (5)
C80.0224 (6)0.0268 (6)0.0258 (6)0.0001 (5)0.0058 (4)0.0009 (5)
C90.0252 (6)0.0327 (7)0.0218 (5)0.0001 (5)0.0070 (5)0.0017 (5)
C100.0240 (6)0.0301 (6)0.0242 (6)0.0034 (5)0.0061 (5)0.0002 (5)
O50.0224 (4)0.0267 (4)0.0223 (4)0.0012 (3)0.0034 (3)0.0027 (3)
O60.0239 (4)0.0292 (5)0.0225 (4)0.0033 (3)0.0045 (3)0.0036 (3)
Geometric parameters (Å, º) top
C1—C61.3816 (16)N2—O31.2210 (14)
C1—C21.3881 (15)C7—O51.4267 (14)
C1—N11.4691 (14)C7—C81.5052 (18)
C2—C31.3768 (15)C7—H7A0.982 (17)
C2—N21.4700 (14)C7—H7B0.990 (17)
C3—C41.3913 (15)C8—O61.4314 (14)
C3—H30.938 (15)C8—H8A0.958 (16)
C4—C51.3811 (16)C8—H8B0.996 (19)
C4—Cl11.7291 (11)C9—O61.4292 (15)
C5—C61.3908 (17)C9—C101.5071 (17)
C5—H50.969 (17)C9—H9A0.962 (17)
C6—H60.949 (15)C9—H9B0.951 (18)
N1—O11.2184 (13)C10—O51.4306 (14)
N1—O21.2215 (13)C10—H10A0.964 (18)
N2—O41.2208 (13)C10—H10B0.973 (17)
C6—C1—C2120.56 (10)O5—C7—H7A108.9 (10)
C6—C1—N1117.89 (10)C8—C7—H7A110.4 (10)
C2—C1—N1121.33 (10)O5—C7—H7B107.0 (10)
C3—C2—C1121.33 (10)C8—C7—H7B110.9 (10)
C3—C2—N2117.30 (9)H7A—C7—H7B109.0 (13)
C1—C2—N2121.19 (10)O6—C8—C7110.89 (10)
C2—C3—C4117.37 (10)O6—C8—H8A109.6 (9)
C2—C3—H3122.1 (9)C7—C8—H8A110.3 (9)
C4—C3—H3120.5 (9)O6—C8—H8B106.8 (10)
C5—C4—C3122.32 (10)C7—C8—H8B111.9 (10)
C5—C4—Cl1119.85 (9)H8A—C8—H8B107.3 (14)
C3—C4—Cl1117.82 (9)O6—C9—C10111.09 (10)
C4—C5—C6119.34 (10)O6—C9—H9A109.7 (10)
C4—C5—H5120.1 (10)C10—C9—H9A110.3 (9)
C6—C5—H5120.6 (10)O6—C9—H9B106.5 (11)
C1—C6—C5119.06 (10)C10—C9—H9B110.7 (11)
C1—C6—H6119.0 (9)H9A—C9—H9B108.3 (14)
C5—C6—H6121.9 (9)O5—C10—C9110.50 (10)
O1—N1—O2125.13 (10)O5—C10—H10A110.2 (10)
O1—N1—C1117.35 (9)C9—C10—H10A110.8 (11)
O2—N1—C1117.50 (9)O5—C10—H10B106.6 (10)
O4—N2—O3124.94 (10)C9—C10—H10B113.0 (10)
O4—N2—C2117.27 (10)H10A—C10—H10B105.5 (14)
O3—N2—C2117.76 (9)C7—O5—C10109.34 (9)
O5—C7—C8110.53 (10)C9—O6—C8109.74 (9)
C6—C1—C2—C31.45 (17)C2—C1—N1—O1137.79 (11)
N1—C1—C2—C3173.08 (10)C6—C1—N1—O2130.77 (11)
C6—C1—C2—N2173.60 (10)C2—C1—N1—O243.91 (15)
N1—C1—C2—N211.86 (16)C3—C2—N2—O437.51 (14)
C1—C2—C3—C40.51 (17)C1—C2—N2—O4147.24 (11)
N2—C2—C3—C4174.73 (10)C3—C2—N2—O3140.47 (11)
C2—C3—C4—C50.50 (17)C1—C2—N2—O334.78 (15)
C2—C3—C4—Cl1179.11 (8)O5—C7—C8—O658.54 (13)
C3—C4—C5—C60.58 (18)O6—C9—C10—O557.95 (14)
Cl1—C4—C5—C6179.16 (9)C8—C7—O5—C1058.67 (13)
C2—C1—C6—C51.35 (17)C9—C10—O5—C758.31 (13)
N1—C1—C6—C5173.37 (10)C10—C9—O6—C856.48 (14)
C4—C5—C6—C10.36 (17)C7—C8—O6—C956.69 (13)
C6—C1—N1—O147.53 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O50.938 (15)2.331 (15)3.2553 (14)168.3 (13)
C5—H5···O4i0.969 (17)2.697 (18)3.6166 (16)158.7 (13)
C6—H6···O6ii0.949 (15)2.468 (15)3.4017 (14)168.1 (12)
C7—H7B···O40.990 (17)2.624 (17)3.4618 (16)142.5 (13)
C8—H8B···O1iii0.996 (19)2.446 (18)3.2604 (16)138.6 (13)
C9—H9B···O3iv0.951 (18)2.649 (18)3.5930 (16)172.3 (14)
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk).

References

First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 & SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds