Download citation
Download citation
link to html
Esterification of tetra­hydro­furan-2r,3t,4t,5c-tetra­carboxylic acid gave selectively the title compound, C10H12O9, in which the two more acidic carboxylic acid groups, in positions 2 and 5, have been esterified. The five-membered ring is in a twist conformation. Hydrogen bonding results in double chains, or ribbons, running along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806011755/dn2022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806011755/dn2022Isup2.hkl
Contains datablock I

CCDC reference: 608318

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.100
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Dimethyl 3 t,4 t-dicarboxytetrahydrofuran-2r,5c-dicarboxylate top
Crystal data top
C10H12O9F(000) = 576
Mr = 276.20Dx = 1.608 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7691 reflections
a = 5.5117 (4) Åθ = 3.0–25.7°
b = 25.419 (3) ŵ = 0.15 mm1
c = 8.1970 (7) ÅT = 100 K
β = 96.634 (6)°Platelet, colourless
V = 1140.73 (19) Å30.26 × 0.22 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1700 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.7°, θmin = 3.0°
φ scansh = 06
7691 measured reflectionsk = 030
2112 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0165P)2 + 0.7399P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.19 e Å3
175 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Special details top

Experimental. Crystal-to-detector distance 30 mm.

The 1H NMR spectra were recorded with a Bruker DPX 200 instrument and referenced internally using the residual protonated solvent resonances relative to tetramethylsilane (δ = 0 p.p.m.).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms bound to O atoms were found on a Fourier-difference map and all the other ones were introduced at calculated positions. All H atoms were treated as riding atoms with an isotropic displacement parameter equal to 1.2 (OH, CH) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3529 (2)0.65970 (5)0.64749 (16)0.0248 (3)
O20.0454 (3)0.66304 (6)0.36142 (17)0.0303 (4)
O30.2079 (3)0.71846 (6)0.47425 (17)0.0293 (3)
O40.2147 (3)0.54022 (6)0.4495 (2)0.0453 (5)
O50.5479 (2)0.59103 (6)0.44315 (17)0.0290 (3)
O70.2138 (2)0.53501 (6)0.92353 (18)0.0312 (4)
O60.1904 (2)0.54079 (5)0.85423 (17)0.0277 (3)
H60.21140.51290.92920.033*
O80.0659 (3)0.64074 (6)1.04181 (18)0.0378 (4)
H80.02830.65091.14850.045*
O90.2176 (3)0.69924 (6)0.98835 (18)0.0355 (4)
C10.1246 (3)0.68552 (8)0.6484 (2)0.0231 (4)
H10.15030.72130.69170.028*
C20.3148 (4)0.60390 (7)0.6646 (2)0.0245 (4)
H20.43360.59040.75280.029*
C30.0560 (3)0.59640 (7)0.7139 (2)0.0224 (4)
H30.05140.58640.61510.027*
C40.0164 (3)0.65307 (7)0.7631 (2)0.0226 (4)
H40.19260.65850.73650.027*
C50.0140 (4)0.68757 (7)0.4773 (2)0.0246 (4)
C60.3753 (4)0.72008 (9)0.3231 (3)0.0350 (5)
H6A0.28700.72940.23310.052*
H6B0.50020.74580.33360.052*
H6C0.44890.68610.30320.052*
C70.3475 (4)0.57477 (8)0.5061 (2)0.0278 (5)
C80.5976 (4)0.56460 (9)0.2924 (3)0.0385 (5)
H8A0.55900.52790.29920.058*
H8B0.76720.56850.27840.058*
H8C0.49920.58000.20030.058*
C90.0358 (4)0.55437 (7)0.8417 (2)0.0246 (4)
C100.0630 (4)0.66716 (8)0.9420 (2)0.0260 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (7)0.0219 (7)0.0278 (7)0.0006 (5)0.0029 (6)0.0017 (6)
O20.0327 (8)0.0354 (8)0.0227 (8)0.0049 (6)0.0030 (6)0.0016 (6)
O30.0297 (7)0.0328 (8)0.0243 (7)0.0063 (6)0.0015 (6)0.0009 (6)
O40.0433 (9)0.0415 (10)0.0545 (11)0.0149 (8)0.0203 (8)0.0206 (8)
O50.0273 (7)0.0332 (8)0.0270 (7)0.0025 (6)0.0062 (6)0.0030 (6)
O70.0270 (7)0.0333 (8)0.0330 (8)0.0015 (6)0.0015 (6)0.0102 (6)
O60.0239 (7)0.0287 (8)0.0305 (8)0.0027 (6)0.0023 (6)0.0064 (6)
O80.0509 (10)0.0420 (9)0.0213 (7)0.0136 (7)0.0070 (7)0.0028 (6)
O90.0397 (9)0.0392 (9)0.0270 (8)0.0091 (7)0.0016 (7)0.0027 (6)
C10.0239 (9)0.0234 (10)0.0219 (10)0.0015 (8)0.0018 (8)0.0004 (7)
C20.0258 (10)0.0217 (9)0.0257 (10)0.0007 (8)0.0011 (8)0.0021 (8)
C30.0241 (10)0.0225 (10)0.0206 (9)0.0002 (7)0.0025 (8)0.0016 (7)
C40.0222 (9)0.0244 (10)0.0210 (10)0.0002 (8)0.0013 (8)0.0009 (8)
C50.0262 (10)0.0241 (10)0.0238 (10)0.0015 (8)0.0039 (8)0.0029 (8)
C60.0317 (11)0.0423 (13)0.0293 (11)0.0040 (10)0.0035 (10)0.0051 (9)
C70.0272 (10)0.0277 (10)0.0288 (11)0.0016 (8)0.0044 (9)0.0018 (8)
C80.0406 (13)0.0437 (13)0.0333 (12)0.0032 (10)0.0125 (10)0.0071 (10)
C90.0261 (10)0.0229 (10)0.0251 (10)0.0010 (8)0.0042 (9)0.0007 (8)
C100.0295 (10)0.0250 (10)0.0235 (10)0.0024 (8)0.0029 (8)0.0014 (8)
Geometric parameters (Å, º) top
O1—C11.420 (2)C1—H10.9800
O1—C21.443 (2)C2—C71.524 (3)
O2—C51.212 (2)C2—C31.539 (3)
O3—C51.324 (2)C2—H20.9800
O3—C61.457 (2)C3—C91.509 (3)
O4—C71.202 (3)C3—C41.560 (3)
O5—C71.337 (2)C3—H30.9800
O5—C81.460 (3)C4—C101.523 (3)
O7—C91.225 (2)C4—H40.9800
O6—C91.309 (2)C6—H6A0.9600
O6—H60.9540C6—H6B0.9600
O8—C101.326 (2)C6—H6C0.9600
O8—H80.9128C8—H8A0.9600
O9—C101.209 (2)C8—H8B0.9600
C1—C51.518 (3)C8—H8C0.9600
C1—C41.529 (3)
C1—O1—C2108.33 (14)C1—C4—H4110.4
C5—O3—C6117.59 (16)C3—C4—H4110.4
C7—O5—C8115.38 (16)O2—C5—O3125.49 (18)
C9—O6—H6115.7O2—C5—C1123.60 (18)
C10—O8—H8111.7O3—C5—C1110.90 (16)
O1—C1—C5111.28 (15)O3—C6—H6A109.5
O1—C1—C4105.52 (14)O3—C6—H6B109.5
C5—C1—C4110.45 (15)H6A—C6—H6B109.5
O1—C1—H1109.8O3—C6—H6C109.5
C5—C1—H1109.8H6A—C6—H6C109.5
C4—C1—H1109.8H6B—C6—H6C109.5
O1—C2—C7111.21 (16)O4—C7—O5124.75 (19)
O1—C2—C3107.30 (15)O4—C7—C2123.88 (19)
C7—C2—C3111.63 (16)O5—C7—C2111.30 (17)
O1—C2—H2108.9O5—C8—H8A109.5
C7—C2—H2108.9O5—C8—H8B109.5
C3—C2—H2108.9H8A—C8—H8B109.5
C9—C3—C2114.51 (16)O5—C8—H8C109.5
C9—C3—C4115.64 (16)H8A—C8—H8C109.5
C2—C3—C4103.06 (15)H8B—C8—H8C109.5
C9—C3—H3107.7O7—C9—O6124.09 (18)
C2—C3—H3107.7O7—C9—C3123.07 (18)
C4—C3—H3107.7O6—C9—C3112.83 (16)
C10—C4—C1110.82 (16)O9—C10—O8123.77 (18)
C10—C4—C3114.34 (15)O9—C10—C4125.09 (18)
C1—C4—C3100.12 (15)O8—C10—C4111.11 (16)
C10—C4—H4110.4
O1—C1—C4—C339.85 (17)O1—C1—C5—O211.0 (3)
O1—C2—C3—C413.31 (19)C4—C1—C5—O2105.9 (2)
C1—O1—C2—C312.0 (2)O1—C1—C5—O3170.41 (15)
C2—O1—C1—C433.32 (18)C4—C1—C5—O372.7 (2)
C2—C3—C4—C131.15 (18)C8—O5—C7—O41.6 (3)
C2—O1—C1—C586.50 (18)C8—O5—C7—C2178.87 (17)
C1—O1—C2—C7110.33 (17)O1—C2—C7—O4137.2 (2)
O1—C2—C3—C9139.76 (16)C3—C2—C7—O417.4 (3)
C7—C2—C3—C998.2 (2)O1—C2—C7—O545.5 (2)
C7—C2—C3—C4135.39 (16)C3—C2—C7—O5165.28 (15)
O1—C1—C4—C1081.20 (18)C2—C3—C9—O713.8 (3)
C5—C1—C4—C10158.43 (16)C4—C3—C9—O7105.8 (2)
C5—C1—C4—C380.52 (18)C2—C3—C9—O6165.65 (16)
C9—C3—C4—C1038.4 (2)C4—C3—C9—O674.7 (2)
C2—C3—C4—C1087.34 (19)C1—C4—C10—O90.6 (3)
C9—C3—C4—C1156.87 (16)C3—C4—C10—O9111.7 (2)
C6—O3—C5—O25.2 (3)C1—C4—C10—O8177.37 (16)
C6—O3—C5—C1173.42 (16)C3—C4—C10—O870.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.951.722.6649 (19)173
O8—H8···O2ii0.911.772.681 (2)174
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds