organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­fluoro­methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Baptista, CEP 24020-150 Niterói, RJ, Brazil, and cDepartment of Chemistry, College of Physical Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: j.skakle@abdn.ac.uk

(Received 11 April 2006; accepted 11 April 2006; online 21 April 2006)

In the crystal structure of the title compound, C10H9F2N3, weak hydrogen bonding involving the triazole and difluoro­methyl groups leads to the formation of chains along [010]. The benzene and triazole rings are essentially coplanar, with an angle of 0.34 (17)° between the planes defined by the two rings.

Comment

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a leading cause of mortality worldwide. The World Health Organization estimates that about one-third of the world's population harbours latent infection of TB. Among such infected individuals, approximately eight million develop active TB, and almost two million of these die from the disease each year. 95% of new TB cases occur in developing countries. The current human immunodeficiency virus (AIDS) pandemic and resistance to the currently available drugs are proving major obstacles to the control of tuberculosis (Tewari et al., 2004[Tewari, N., Tiwari, V. K., Tipathi, R. P., Chaturvedi, V., Srivastava, A., Srivastava, R., Shukla, P. K., Chaturvedi, A. K., Gaikwad, A., Sinha, S. & Srivastava, B. S. (2004). Bioorg. Med. Chem. Lett. 14, 329-332.]; World Health Organization, 2005[World Health Organization (2005). Report WHO/HTM/TB/2005. Global Tuberculosis Control - Surveillance, Planning, Financing. https://www.who.int/tb.]; Tripathi et al., 2005[Tripathi, R. P., Tewari, N., Dwivedi, N. & Tiwari, V. K. (2005). Med. Res. Rev. 25, 93-131.]). Chemotherapy of TB started in the 1940s. Various drugs have been used against TB, including para-amino­salicylic acid, isoniazid, pyrazinamide, cyclo­serine, ethio­namide, rifampicin and ethambutol. However, six decades have passed without any significant development of new chemical treatments of tuberculosis. TB really can be classed as a neglected disease.

[Scheme 1]

In pursuit of new drugs for TB, we have synthesized a series of 1-aryl-4-difluoro­methyl-1,2,3-triazole derivatives and evaluated their inhibitory activities against Mycobacterium tuberculosis. All derivatives exhibited tuberculosis inhibitory activity; a full description of biological tests will be reported elsewhere (Costa, Boechat, Rangel et al., 2006[Costa, M. S., Boechat, N., Rangel, È. A., Ferreira, V. F., Junior, I. N., Lourenço, M. C. S. & Wardell, S. M. S. V. (2006). Eur. J. Med. Chem. In preparation.]). The structure of 1-(4-methyl­phen­yl)-4-difluoro­methyl-1H-1,2,3-triazole, which exhibited 87% of inhibition at a concentration of 40.0 µg ml−1, is reported here.

The geometry of the title mol­ecular structure (Fig. 1[link]) was analysed with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13]). The methyl group is almost coplanar with the aryl ring, with a torsion angle C7—C8—C9—C91 = 178.2 (3)°. Excluding the difluoro­methyl group, the mol­ecule is planar, with an angle between the planes defined by the triazole and aryl rings of 0.34 (17) Å. This is in marked contrast to the orientations in1-(2,5-dimethoxy­phen­yl)-4-difluoro­methyl-1H-1,2,3-triazole (Costa, Boechat, Ferreira, Wardell & Skakle, 2006[Costa, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. V. & Skakle, J. M. S. (2006). Acta Cryst. E62, o2048-o2050.]), in which the substituent meth­oxy groups on the aryl ring cause a marked deviation from planarity.

With no scope for strong hydrogen bonding in the structure, weak hydrogen bonds exist (Table 1[link]); an intra­molecular hydrogen bond provides additional support between the triazole and aryl ring (C7—H7⋯N2). All other hydrogen bonds involve donors and acceptors within the triazole–difluoro­methyl unit, and lead to the formation of chains along [010] (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms are shown as circles of arbitrary radii and the dashed line indicates a weak hydrogen bond.
[Figure 2]
Figure 2
Part of the structure of the title compound, showing the formation of hydrogen-bonded (dashed lines) chains along [010]. Ellipsoids and H atoms are shown as in Fig. 1[link]. [Symmetry code: (i) [{3\over 2}]x, −[{1\over 2}] + y, [{1\over 2}]z].

Experimental

A solution of diazo­malonaldehyde (5.0 mmol) in water (30 ml) was added dropwise to a stirred solution of 4-amino­toluene hydro­chloride (4.5 mmol) in water (5 ml). The reaction mixture was stirred for 24 h at room temperature; the solid was collected, washed with cold water and crystallized from aqueous ethanol. The title compound was obtained in 93% yield as colourless solid, m.p. 351–352 K. Analysis calculated for C10H9F2N3: C 57.41, H 4.34, N 20.09%; found: C 57.45, H 4.37, N 19.97%. Full spectroscopic data are given in the CIF.

Crystal data
  • C10H9F2N3

  • Mr = 209.20

  • Monoclinic, P 21 /n

  • a = 4.6055 (6) Å

  • b = 9.4285 (9) Å

  • c = 21.459 (3) Å

  • β = 92.136 (5)°

  • V = 931.2 (2) Å3

  • Z = 4

  • Dx = 1.492 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Cut blade, colourless

  • 0.22 × 0.11 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.636, Tmax = 1.000

  • 8742 measured reflections

  • 2112 independent reflections

  • 1262 reflections with I > 2σ(I)

  • Rint = 0.071

  • θmax = 27.7°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.160

  • S = 1.03

  • 2112 reflections

  • 139 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6473P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N2 0.95 2.45 2.780 (3) 100
C5—H5⋯F1i 0.93 2.52 3.421 (3) 164
C41—H41⋯N2i 1.00 2.46 3.458 (3) 173
C41—H41⋯N3i 1.00 2.47 3.403 (3) 155
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.93 Å (triazole), 0.95 Å (ar­yl), 1.00 Å (tertiary –CHF2) and 0.98 Å (meth­yl). Uiso values for the triazole and tertiary H were freely refined; otherwise Uiso(H) values were set at 1.2Ueq(aryl C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

4-Difluoromethyl-1-(4-methylphenyl)-1H-1,2,3-triazole top
Crystal data top
C10H9F2N3F(000) = 432
Mr = 209.20Dx = 1.492 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1891 reflections
a = 4.6055 (6) Åθ = 2.9–27.5°
b = 9.4285 (9) ŵ = 0.12 mm1
c = 21.459 (3) ÅT = 120 K
β = 92.136 (5)°Cut blade, colourless
V = 931.2 (2) Å30.22 × 0.11 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2112 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1262 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.6°
φ and ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1012
Tmin = 0.636, Tmax = 1.000l = 2718
8742 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.160H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6473P]
where P = (Fo2 + 2Fc2)/3
2112 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. IR (KBr, νmax, cm-1): 3162, 1031, 3152, 1043. 1H NMR (500 MHz, CDCl3/Me4Si): δ 2.43 (s, 1H, CH3), 6.94 (t, 1H, CF2H, J = 54.5 Hz), 7.31 (d, 2H, J = 8.8 Hz, arom.), 7.60 (d, 2H, J = 8.8 Hz, arom.), 8.18 (s, 1H, triazole); 13C NMR (125 MHz, CDCl3/Me4Si): δ 20.5 (CH3), 109.5 (t, CF2H, J = 233.4 Hz), 119.9, 139.1, 133.6, 129.8, 120.1, 142.7 (t, J = 28.5 Hz); 19F NMR (376.0 MHz, CDCl3/CFCl3): δ -112.3 (2 F, CHF2); EIMS (m/z): 209 (M+, 42%), 180 (M+-29, 68%), 162 (M+-47, 40%), 130 (M+-79, 42%), 91 (M+-118, 100%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3195 (5)0.8343 (2)0.31724 (10)0.0260 (5)
N20.3710 (5)0.9715 (2)0.30179 (11)0.0310 (6)
N30.5439 (5)0.9707 (2)0.25457 (10)0.0295 (6)
C40.6035 (5)0.8331 (3)0.24014 (12)0.0250 (6)
C410.7803 (6)0.7957 (3)0.18634 (13)0.0302 (7)
H410.88040.70280.19390.039 (8)*
F10.9784 (3)0.89866 (16)0.17542 (8)0.0393 (5)
F20.6082 (3)0.78929 (19)0.13270 (8)0.0431 (5)
C50.4641 (5)0.7459 (3)0.27948 (12)0.0255 (6)
H50.46140.64810.28360.020 (7)*
C60.1326 (5)0.8032 (3)0.36744 (12)0.0237 (6)
C70.0059 (6)0.9134 (3)0.39883 (13)0.0308 (7)
H70.04111.00890.38720.037*
C80.1735 (6)0.8830 (3)0.44753 (13)0.0331 (7)
H80.26000.95910.46920.040*
C90.2305 (5)0.7448 (3)0.46568 (13)0.0295 (7)
C910.4185 (6)0.7151 (3)0.51982 (14)0.0363 (7)
H91A0.39590.61570.53240.047*
H92B0.62210.73350.50760.047*
H93C0.36010.77680.55490.047*
C100.1033 (6)0.6371 (3)0.43229 (13)0.0308 (7)
H100.14040.54140.44330.037*
C110.0768 (6)0.6648 (3)0.38327 (12)0.0279 (6)
H110.16050.58900.36090.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0313 (12)0.0172 (11)0.0294 (13)0.0014 (9)0.0006 (10)0.0012 (10)
N20.0445 (14)0.0177 (12)0.0309 (14)0.0011 (10)0.0047 (12)0.0025 (10)
N30.0411 (14)0.0194 (12)0.0283 (13)0.0006 (10)0.0045 (11)0.0014 (10)
C40.0294 (14)0.0180 (13)0.0274 (15)0.0021 (11)0.0009 (12)0.0012 (11)
C410.0373 (16)0.0207 (14)0.0323 (17)0.0031 (12)0.0006 (13)0.0034 (12)
F10.0369 (9)0.0341 (10)0.0475 (11)0.0100 (7)0.0101 (8)0.0035 (8)
F20.0420 (10)0.0563 (12)0.0311 (10)0.0080 (8)0.0021 (8)0.0078 (8)
C50.0270 (13)0.0177 (14)0.0314 (16)0.0002 (11)0.0036 (12)0.0013 (11)
C60.0254 (13)0.0229 (14)0.0226 (14)0.0026 (11)0.0012 (11)0.0017 (11)
C70.0342 (15)0.0213 (14)0.0370 (17)0.0008 (12)0.0008 (13)0.0006 (12)
C80.0315 (15)0.0303 (15)0.0375 (17)0.0046 (12)0.0021 (13)0.0037 (13)
C90.0223 (13)0.0363 (17)0.0297 (16)0.0014 (12)0.0035 (12)0.0003 (13)
C910.0312 (15)0.0401 (17)0.0377 (18)0.0033 (13)0.0037 (13)0.0010 (14)
C100.0387 (16)0.0235 (14)0.0302 (16)0.0047 (12)0.0005 (13)0.0022 (12)
C110.0335 (15)0.0225 (14)0.0276 (15)0.0006 (11)0.0000 (12)0.0023 (12)
Geometric parameters (Å, º) top
N1—C51.355 (3)C7—C81.386 (4)
N1—N21.358 (3)C7—H70.9500
N1—C61.434 (3)C8—C91.388 (4)
N2—N31.312 (3)C8—H80.9500
N3—C41.364 (3)C9—C101.385 (4)
C4—C51.357 (4)C9—C911.501 (4)
C4—C411.480 (4)C91—H91A0.9800
C41—F11.358 (3)C91—H92B0.9800
C41—F21.374 (3)C91—H93C0.9800
C41—H411.0000C10—C111.388 (4)
C5—H50.9262C10—H100.9500
C6—C111.375 (4)C11—H110.9500
C6—C71.380 (4)
C5—N1—N2110.2 (2)C6—C7—H7120.4
C5—N1—C6130.2 (2)C8—C7—H7120.4
N2—N1—C6119.6 (2)C7—C8—C9122.0 (2)
N3—N2—N1107.44 (19)C7—C8—H8119.0
N2—N3—C4108.3 (2)C9—C8—H8119.0
C5—C4—N3109.3 (2)C10—C9—C8117.0 (2)
C5—C4—C41128.9 (2)C10—C9—C91122.1 (2)
N3—C4—C41121.7 (2)C8—C9—C91120.9 (2)
F1—C41—F2104.9 (2)C9—C91—H91A109.5
F1—C41—C4110.9 (2)C9—C91—H92B109.5
F2—C41—C4110.3 (2)H91A—C91—H92B109.5
F1—C41—H41110.2C9—C91—H93C109.5
F2—C41—H41110.2H91A—C91—H93C109.5
C4—C41—H41110.2H92B—C91—H93C109.5
N1—C5—C4104.7 (2)C9—C10—C11122.0 (2)
N1—C5—H5123.2C9—C10—H10119.0
C4—C5—H5132.1C11—C10—H10119.0
C11—C6—C7120.5 (2)C6—C11—C10119.2 (2)
C11—C6—N1120.2 (2)C6—C11—H11120.4
C7—C6—N1119.3 (2)C10—C11—H11120.4
C6—C7—C8119.1 (2)
C5—N1—N2—N30.5 (3)N2—N1—C6—C11179.5 (2)
C6—N1—N2—N3179.3 (2)C5—N1—C6—C7179.1 (3)
N1—N2—N3—C40.3 (3)N2—N1—C6—C70.6 (4)
N2—N3—C4—C50.1 (3)C11—C6—C7—C81.5 (4)
N2—N3—C4—C41176.5 (2)N1—C6—C7—C8179.7 (2)
C5—C4—C41—F1153.8 (3)C6—C7—C8—C90.2 (4)
N3—C4—C41—F130.4 (4)C7—C8—C9—C100.9 (4)
C5—C4—C41—F290.4 (3)C7—C8—C9—C91178.2 (3)
N3—C4—C41—F285.4 (3)C8—C9—C10—C110.8 (4)
N2—N1—C5—C40.5 (3)C91—C9—C10—C11178.2 (3)
C6—N1—C5—C4179.3 (3)C7—C6—C11—C101.5 (4)
N3—C4—C5—N10.3 (3)N1—C6—C11—C10179.6 (2)
C41—C4—C5—N1175.8 (3)C9—C10—C11—C60.4 (4)
C5—N1—C6—C110.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N20.952.452.780 (3)100
C5—H5···F1i0.932.523.421 (3)164
C41—H41···N2i1.002.463.458 (3)173
C41—H41···N3i1.002.473.403 (3)155
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We are indebted to the EPSRC for the use of both the Chemical Database Service at Daresbury, England, primarily for access to the Cambridge Structural Database (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]), and the X-ray service at the University of Southampton, England, for data collection.

References

First citationCosta, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. V. & Skakle, J. M. S. (2006). Acta Cryst. E62, o2048–o2050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosta, M. S., Boechat, N., Rangel, È. A., Ferreira, V. F., Junior, I. N., Lourenço, M. C. S. & Wardell, S. M. S. V. (2006). Eur. J. Med. Chem. In preparation.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, National University of Ireland, Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewari, N., Tiwari, V. K., Tipathi, R. P., Chaturvedi, V., Srivastava, A., Srivastava, R., Shukla, P. K., Chaturvedi, A. K., Gaikwad, A., Sinha, S. & Srivastava, B. S. (2004). Bioorg. Med. Chem. Lett. 14, 329–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTripathi, R. P., Tewari, N., Dwivedi, N. & Tiwari, V. K. (2005). Med. Res. Rev. 25, 93–131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWorld Health Organization (2005). Report WHO/HTM/TB/2005. Global Tuberculosis Control – Surveillance, Planning, Financing. https://www.who.int/tbGoogle Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds