Download citation
Download citation
link to html
In the title compound, (C2H10N2)[Cu(C7H3NO4)2(H2O)4]·2H2O, the CuII ion occupies a special position on an inversion center and has an elongated octa­hedral geometry with the pyridine-3,5-dicarboxyl­ate ligands in trans positions. The ethyl­enediammonium cation is also in a special position on an inversion center located at the mid-point of the C—C bond. Multiple crystallographically independent hydrogen bonds form a three-dimensional network in the crystal structure. π–π Inter­actions between aromatic rings of the pyridine-3,5-dicarboxyl­ate ligand are observed. The electron-spin resonance (ESR) spectrum is in agreement with an elongated octa­hedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806012517/ng2028sup1.cif
Contains datablocks global, I, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806012517/ng2028Isup2.hkl
Contains datablock I

CCDC reference: 297731

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.069
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu - O6 .. 6.66 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: X-SEED (Version 2.0; Barbour, 2001); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

Ethylenediammonium tetraaquabis(pyridine-3,5-dicarboxylato-κN)copper(II) dihydrate top
Crystal data top
(C2H10N2)[Cu(C7H3NO4)2(H2O)4]·2H2OZ = 1
Mr = 563.96F(000) = 293
Triclinic, P1Dx = 1.653 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.870 (1) ÅCell parameters from 3572 reflections
b = 8.476 (1) Åθ = 2.6–25.4°
c = 10.987 (1) ŵ = 1.04 mm1
α = 77.574 (2)°T = 294 K
β = 74.588 (2)°Prism, blue
γ = 67.865 (1)°0.20 × 0.13 × 0.04 mm
V = 566.55 (12) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2073 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0.661 pixels mm-1θmax = 25.4°, θmin = 1.9°
ω scansh = 88
Absorption correction: analytrical
(Sheldrick, 2000)
k = 1010
Tmin = 0.817, Tmax = 0.958l = 1313
4800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
2073 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.31 e Å3
Special details top

Experimental. Selected IR data (cm-1, KBr pellets): 3503 (m), 3437 (m), 3100 (m), 2960 (m), 2910 (m), 3072 (m), 3035 (m), 2972 (m), 2795 (m), 2577 (w), 1711 (w), 1700 (s, COO-), 1582 (s), 1480 (m), 1432 (w), 1390 (s), 1300 (d), 1131 (w), 1210 (m), 1170 (m), 940 (w), 766 (m), 750 (m), 700 (m), 560 (w), 511 (w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.50000.50000.02722 (13)
O10.7886 (3)0.06461 (18)0.13781 (13)0.0386 (4)
O20.8160 (3)0.19806 (17)0.23504 (13)0.0389 (4)
O30.8708 (2)0.31862 (17)0.70174 (14)0.0367 (4)
O40.7163 (3)0.09359 (19)0.80747 (14)0.0470 (4)
O50.2402 (2)0.46258 (17)0.60306 (15)0.0431 (4)
H5A0.12340.54370.62380.065*
H5B0.23280.37140.65160.065*
N10.6356 (2)0.24741 (19)0.48379 (15)0.0246 (4)
C20.6815 (3)0.1874 (2)0.37300 (18)0.0245 (4)
H20.65880.26590.30030.029*
C30.7615 (3)0.0134 (2)0.36104 (18)0.0245 (4)
C40.7993 (3)0.1017 (2)0.46989 (18)0.0245 (4)
H40.85550.21910.46520.029*
C50.7538 (3)0.0421 (2)0.58488 (18)0.0235 (4)
C60.6707 (3)0.1339 (2)0.58808 (18)0.0248 (4)
H60.63820.17480.66570.030*
C70.7919 (3)0.0433 (2)0.23450 (19)0.0279 (4)
C80.7832 (3)0.1607 (2)0.70853 (19)0.0273 (4)
C90.9226 (3)0.4520 (3)0.0202 (2)0.0342 (5)
H9A0.84480.46970.10660.041*
H9B0.81950.49490.03490.041*
N21.0391 (3)0.2668 (2)0.01366 (17)0.0323 (4)
H2A1.132 (3)0.230 (3)0.058 (2)0.049*
H2B1.090 (4)0.246 (3)0.0623 (16)0.049*
H2C0.952 (3)0.214 (3)0.043 (2)0.049*
O60.3544 (3)0.5454 (2)0.29936 (18)0.0571 (5)
H6A0.27090.49000.30550.086*
H6B0.36960.60680.22770.086*
O70.5713 (3)0.2142 (2)0.07924 (17)0.0618 (5)
H7A0.60180.18580.00570.093*
H7B0.59690.12470.11230.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0327 (2)0.01446 (18)0.0300 (2)0.00753 (14)0.00087 (14)0.00385 (14)
O10.0600 (10)0.0330 (8)0.0267 (8)0.0232 (7)0.0094 (7)0.0027 (7)
O20.0656 (10)0.0253 (8)0.0265 (8)0.0202 (7)0.0010 (7)0.0063 (6)
O30.0422 (9)0.0202 (7)0.0366 (8)0.0039 (6)0.0034 (7)0.0009 (6)
O40.0719 (11)0.0306 (8)0.0265 (8)0.0017 (8)0.0129 (8)0.0040 (7)
O50.0365 (8)0.0188 (7)0.0587 (10)0.0080 (6)0.0100 (7)0.0008 (7)
N10.0282 (9)0.0171 (8)0.0275 (9)0.0076 (6)0.0040 (7)0.0032 (7)
C20.0280 (10)0.0200 (9)0.0234 (10)0.0082 (8)0.0034 (8)0.0010 (8)
C30.0245 (10)0.0212 (10)0.0270 (10)0.0090 (8)0.0031 (8)0.0023 (8)
C40.0251 (10)0.0179 (9)0.0301 (11)0.0069 (7)0.0045 (8)0.0048 (8)
C50.0221 (9)0.0207 (9)0.0268 (10)0.0072 (7)0.0042 (8)0.0022 (8)
C60.0295 (10)0.0210 (9)0.0240 (10)0.0091 (8)0.0033 (8)0.0047 (8)
C70.0311 (11)0.0255 (10)0.0270 (11)0.0116 (8)0.0019 (8)0.0044 (9)
C80.0259 (10)0.0231 (10)0.0301 (11)0.0058 (8)0.0061 (8)0.0014 (9)
C90.0424 (13)0.0262 (11)0.0324 (12)0.0108 (9)0.0067 (10)0.0031 (9)
N20.0481 (12)0.0240 (9)0.0260 (10)0.0144 (8)0.0068 (8)0.0024 (8)
O60.0775 (13)0.0377 (9)0.0711 (12)0.0265 (9)0.0397 (10)0.0060 (9)
O70.0963 (15)0.0413 (10)0.0453 (10)0.0159 (10)0.0242 (10)0.0020 (8)
Geometric parameters (Å, º) top
Cu—N12.0140 (15)C4—C51.376 (3)
Cu—N1i2.0140 (15)C4—H40.9300
Cu—O51.9409 (14)C5—C61.386 (2)
Cu—O5i1.9409 (14)C5—C81.518 (3)
Cu—O62.5545 (16)C6—H60.9300
O1—C71.243 (2)C9—N21.477 (3)
O2—C71.257 (2)C9—C9ii1.495 (4)
O3—C81.253 (2)C9—H9A0.9700
O4—C81.233 (2)C9—H9B0.9700
O5—H5A0.8500N2—H2A0.833 (16)
O5—H5B0.8500N2—H2B0.843 (16)
N1—C21.335 (2)N2—H2C0.836 (16)
N1—C61.339 (2)O6—H6A0.8500
C2—C31.389 (3)O6—H6B0.8501
C2—H20.9300O7—H7A0.8500
C3—C41.386 (3)O7—H7B0.8500
C3—C71.505 (3)
N1—Cu—N1i180.0C6—C5—C8118.80 (17)
O5—Cu—N190.02 (6)N1—C6—C5122.61 (17)
O5i—Cu—N189.98 (6)N1—C6—H6118.7
O5—Cu—N1i89.98 (6)C5—C6—H6118.7
O5i—Cu—N1i90.02 (6)O1—C7—O2124.59 (18)
N1—Cu—O689.10 (6)O1—C7—C3118.56 (17)
N1i—Cu—O690.90 (6)O2—C7—C3116.84 (17)
O5—Cu—O5i180.000 (1)O4—C8—O3125.51 (19)
O5—Cu—O689.80 (6)O4—C8—C5117.11 (17)
O5i—Cu—O690.20 (6)O3—C8—C5117.37 (17)
Cu—O5—H5A123.4N2—C9—C9ii110.0 (2)
Cu—O5—H5B126.1N2—C9—H9A109.7
H5A—O5—H5B108.1C9ii—C9—H9A109.7
C2—N1—C6118.21 (16)N2—C9—H9B109.7
C2—N1—Cu122.17 (13)C9ii—C9—H9B109.7
C6—N1—Cu119.52 (12)H9A—C9—H9B108.2
N1—C2—C3123.20 (17)C9—N2—H2A110.3 (17)
N1—C2—H2118.4C9—N2—H2B111.5 (17)
C3—C2—H2118.4H2A—N2—H2B113 (2)
C4—C3—C2117.58 (17)C9—N2—H2C108.7 (17)
C4—C3—C7122.64 (17)H2A—N2—H2C108 (2)
C2—C3—C7119.69 (17)H2B—N2—H2C105 (2)
C5—C4—C3120.01 (17)Cu—O6—H6A114.1
C5—C4—H4120.0Cu—O6—H6B133.2
C3—C4—H4120.0H6A—O6—H6B112.7
C4—C5—C6118.38 (17)H7A—O7—H7B109.8
C4—C5—C8122.79 (17)
O5—Cu—N1—C2112.62 (16)C3—C4—C5—C60.1 (3)
O5iii—Cu—N1—C2176.58 (13)C3—C4—C5—C8177.65 (17)
N1iii—Cu—N1—C2166.22 (13)C2—N1—C6—C50.4 (3)
O6—Cu—N1—C222.82 (16)Cu—N1—C6—C5176.80 (14)
O5—Cu—N1—C663.56 (16)C4—C5—C6—N10.7 (3)
O5iii—Cu—N1—C60.40 (19)C8—C5—C6—N1178.61 (16)
N1iii—Cu—N1—C69.96 (19)C4—C3—C7—O1168.58 (18)
O6—Cu—N1—C6153.36 (16)C2—C3—C7—O115.0 (3)
C6—N1—C2—C30.7 (3)C4—C3—C7—O212.5 (3)
Cu—N1—C2—C3175.53 (14)C2—C3—C7—O2163.87 (18)
N1—C2—C3—C41.5 (3)C4—C5—C8—O4172.55 (19)
N1—C2—C3—C7175.05 (17)C6—C5—C8—O45.2 (3)
C2—C3—C4—C51.2 (3)C4—C5—C8—O36.5 (3)
C7—C3—C4—C5175.28 (17)C6—C5—C8—O3175.69 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iv0.851.792.6289 (19)167
O5—H5B···O2v0.851.782.6289 (19)172
O6—H6A···O3v0.852.052.890 (2)167
O6—H6B···O7vi0.852.042.875 (2)166
O7—H7A···O10.852.142.947 (2)159
O7—H7B···O4vii0.852.012.851 (2)169
N2—H2A···O4viii0.83 (2)1.94 (2)2.738 (2)159 (2)
N2—H2B···O2ix0.84 (2)1.92 (2)2.757 (2)176 (2)
N2—H2C···O10.84 (2)1.96 (2)2.780 (2)168 (2)
Symmetry codes: (iv) x1, y+1, z; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x, y, z1; (viii) x+2, y, z+1; (ix) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds