organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

π-Stacked chains in 3,5-di­methyl-1,7-di­phenyl-1,7-di­hydro­di­pyrazolo[3,4-b,4′,3′-e]pyridine

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, A.A. 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 - Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 3 March 2006; accepted 27 March 2006; online 5 April 2006)

The title compound, C21H17N5, was prepared using a microwave-induced condensation reaction between 5-amino-3-methyl-1-phenylpyrazole and formaldehyde. The molecules lie across twofold rotation axes in space group C2/c and are into chains by a ππ stacking inter­action.

Comment

The title compound, (I)[link], has been prepared using microwave irradiation in a solvent-free system and this provides an attractive alternative to the method recently reported (Abramos et al., 2001[Abramos, M. A., Ceulemans, E., Jackers, C., der Auweraer, M. & Dehaen, W. (2001). Tetrahedron, 57, 9123-9129.]), not only in eliminating the solvent, but also in reducing the reaction time from hours to minutes while considerably improving the yield, from 37% to 65%. The simplicity of the present procedure and its selectivity also contrast with the previous method which required two distinct azoles, an amino­pyrazole and 5-chloro-4-formyl­pyrazole, to generate the product.

[Scheme 1]

The mol­ecules of the title compound (I)[link] (Fig. 1[link]) lie across twofold rotation axes in space group C2/c: the reference mol­ecule was selected as that lying across the axis along (½, y, ¼).

The bond distances (Table 1[link]) within the pyridine ring are consistent with aromatic delocalization, but there is very strong bond fixation within the pyrazole rings (see scheme). The dihedral angle between the phenyl ring and the adjacent pyrazole ring is 27.4 (2)°.

A single ππ stacking inter­action links the mol­ecules into chains. The reference mol­ecule, which lies across (½, y, ¼), is related by inversion to the adjacent mol­ecules lying across the axes along (½, y, −¼) and (½, y, ¾); the heterocyclic systems in these three mol­ecules are thus parallel with an inter­planar spacing between adjacent rings of 3.363 (2) Å. The ring centroid separations between the pyridine ring of the reference mol­ecule and the pyridine and pyrazole rings of an adjacent mol­ecule are 3.772 (2) Å and 3.489 (2) Å, respectively. Propagation of this inter­action by inversion thus generates a chain of π-stacked mol­ecules along the [001] direction (Fig. 2[link]). Two chains of this type, related to one another by the C-centring operation, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains: in particular C—H⋯N and C—H⋯π hydrogen bonds are absent from the structure of (I)[link].

[Figure 1]
Figure 1
The molecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked `a' are at the symmetry position (1 − x, y, [{1\over 2}]z).
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I)[link], showing the formation of a π-stacked chain along [001]. For the sake of clarity, H atoms have been omitted.

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenyl­pyrazole (1.0 mmol) and formaldehyde (1.0 mmol as 37% aqueous solution) were placed in open Pyrex vessels and irradiated in a domestic microwave oven for 1.5 min at 600 W. The reaction mixture was then extracted with ethanol. After the solvent had been removed under reduced pressure, the product was recrystallized from dimethyl­formamide to give crystals that were suitable for single-crystal X-ray diffraction. Yield 65%; m. p. 485–486 K, literature value 490–491 K (Abramos et al., 2001[Abramos, M. A., Ceulemans, E., Jackers, C., der Auweraer, M. & Dehaen, W. (2001). Tetrahedron, 57, 9123-9129.]),

Crystal data
  • C21H17N5

  • Mr = 339.40

  • Monoclinic, C 2/c

  • a = 21.2976 (4) Å

  • b = 10.9267 (3) Å

  • c = 7.4201 (2) Å

  • β = 98.108 (2)°

  • V = 1709.49 (7) Å3

  • Z = 4

  • Dx = 1.319 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1957 reflections

  • θ = 3.4–27.5°

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • Lath, colourless

  • 0.60 × 0.18 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.990

  • 14999 measured reflections

  • 1957 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −27 → 27

  • k = −14 → 13

  • l = −8 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.05

  • 1957 reflections

  • 120 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0625P)2 + 0.6017P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected bond lengths (Å)

N1—N2 1.3900 (12)
N2—C3 1.3111 (15)
C3—C3A 1.4320 (16)
C3A—C4 1.3860 (14)
N1—C8A 1.3686 (13)
C3A—C8A 1.4195 (15)
N8—C8A 1.3375 (12)
N8—C8A 1.3375 (12)

All H atoms were located in difference maps, and then treated as riding atoms with C—H distances 0.93 Å (aromatic) or 0.96 Å (meth­yl), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2004[Burla, M. C., Caliandro, R., Camalli, M., Carrazzini, B., Cascarano, G. L.,De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10, Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: Sir2004 (Burla et al., 200) and WinGX (Farrugia, 1999); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

3,5-Dimethyl-1,7-diphenyl-1,7-dihydrodipyrazolo[3,4 - b,4',3'-e]pyridine top
Crystal data top
C21H17N5F(000) = 712
Mr = 339.40Dx = 1.319 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1957 reflections
a = 21.2976 (4) Åθ = 3.4–27.5°
b = 10.9267 (3) ŵ = 0.08 mm1
c = 7.4201 (2) ÅT = 293 K
β = 98.108 (2)°Lath, colourless
V = 1709.49 (7) Å30.60 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
1957 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
φ and ω scansh = 2727
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1413
Tmin = 0.925, Tmax = 0.990l = 89
14999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.6017P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39729 (4)0.63736 (8)0.34529 (13)0.0370 (2)
C110.37789 (5)0.75836 (10)0.37869 (14)0.0369 (3)
C120.31364 (6)0.78442 (12)0.36680 (18)0.0470 (3)
C130.29433 (7)0.90036 (13)0.4097 (2)0.0571 (4)
C140.33815 (8)0.99045 (14)0.4626 (2)0.0617 (4)
C150.40171 (8)0.96455 (13)0.4712 (2)0.0613 (4)
C160.42225 (6)0.84907 (12)0.4299 (2)0.0495 (3)
N20.35836 (5)0.54010 (9)0.37799 (14)0.0411 (3)
C30.38888 (6)0.43936 (11)0.34922 (15)0.0390 (3)
C310.36138 (7)0.31626 (12)0.37483 (18)0.0512 (3)
C3A0.44940 (5)0.46605 (9)0.29545 (14)0.0354 (3)
C40.50000.39861 (14)0.25000.0374 (4)
N80.50000.66527 (11)0.25000.0346 (3)
C8A0.45281 (5)0.59578 (10)0.29447 (14)0.0331 (3)
H120.28370.72420.33010.056*
H130.25130.91760.40280.069*
H140.32491.06810.49230.074*
H150.43141.02570.50520.074*
H160.46540.83260.43660.059*
H31A0.32200.32530.42220.077*
H31B0.39040.26960.45880.077*
H31C0.35410.27450.25990.077*
H40.50000.31350.25000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (5)0.0356 (5)0.0439 (5)0.0034 (4)0.0084 (4)0.0034 (4)
C110.0380 (6)0.0375 (6)0.0368 (5)0.0002 (4)0.0111 (4)0.0030 (4)
C120.0375 (6)0.0473 (7)0.0581 (7)0.0005 (5)0.0132 (5)0.0025 (6)
C130.0460 (7)0.0534 (8)0.0768 (9)0.0099 (6)0.0252 (6)0.0048 (7)
C140.0665 (9)0.0442 (7)0.0815 (10)0.0052 (7)0.0348 (8)0.0039 (7)
C150.0593 (9)0.0443 (8)0.0847 (11)0.0094 (6)0.0249 (8)0.0126 (7)
C160.0407 (6)0.0452 (7)0.0643 (8)0.0029 (5)0.0135 (6)0.0053 (6)
N20.0375 (5)0.0417 (6)0.0445 (6)0.0093 (4)0.0068 (4)0.0035 (4)
C30.0401 (6)0.0393 (6)0.0361 (6)0.0083 (5)0.0006 (4)0.0030 (4)
C310.0571 (8)0.0440 (7)0.0523 (7)0.0161 (6)0.0071 (6)0.0012 (5)
C3A0.0374 (6)0.0340 (6)0.0333 (5)0.0039 (4)0.0005 (4)0.0014 (4)
C40.0442 (8)0.0300 (7)0.0359 (7)0.0000.0019 (6)0.000
N80.0310 (6)0.0333 (6)0.0397 (7)0.0000.0059 (5)0.000
C8A0.0314 (5)0.0335 (5)0.0335 (5)0.0006 (4)0.0015 (4)0.0015 (4)
Geometric parameters (Å, º) top
N1—N21.3900 (12)C13—H130.93
N2—C31.3111 (15)C14—C151.376 (2)
C3—C3A1.4320 (16)C14—H140.93
C3A—C41.3860 (14)C15—C161.3838 (18)
N1—C8A1.3686 (13)C15—H150.93
C3A—C8A1.4195 (15)C16—H160.93
N8—C8A1.3375 (12)C3—C311.4899 (16)
N1—C111.4174 (14)C31—H31A0.96
C11—C161.3850 (16)C31—H31B0.96
C11—C121.3883 (16)C31—H31C0.96
C12—C131.3829 (19)C4—H40.93
C12—H120.93N8—C8A1.3375 (12)
C13—C141.375 (2)
C8A—N1—N2110.74 (9)C3—N2—N1106.97 (10)
C8A—N1—C11129.96 (9)N2—C3—C3A111.14 (10)
N2—N1—C11119.14 (9)N2—C3—C31121.63 (11)
C16—C11—C12119.91 (11)C3A—C3—C31127.22 (11)
C16—C11—N1120.75 (10)C3—C31—H31A109.5
C12—C11—N1119.28 (10)C3—C31—H31B109.5
C13—C12—C11119.72 (12)H31A—C31—H31B109.5
C13—C12—H12120.1C3—C31—H31C109.5
C11—C12—H12120.1H31A—C31—H31C109.5
C14—C13—C12120.65 (13)H31B—C31—H31C109.5
C14—C13—H13119.7C4—C3A—C8A119.18 (10)
C12—C13—H13119.7C4—C3A—C3136.13 (11)
C13—C14—C15119.32 (13)C8A—C3A—C3104.69 (10)
C13—C14—H14120.3C3Ai—C4—C3A115.75 (14)
C15—C14—H14120.3C3Ai—C4—H4122.1
C14—C15—C16121.13 (14)C3A—C4—H4122.1
C14—C15—H15119.4C8Ai—N8—C8A110.82 (13)
C16—C15—H15119.4N8—C8A—N1126.02 (10)
C15—C16—C11119.25 (12)N8—C8A—C3A127.52 (10)
C15—C16—H16120.4N1—C8A—C3A106.45 (9)
C11—C16—H16120.4
C8A—N1—C11—C1624.88 (18)N2—C3—C3A—C4179.68 (10)
N2—N1—C11—C16150.10 (11)C31—C3—C3A—C40.6 (2)
C8A—N1—C11—C12157.75 (11)N2—C3—C3A—C8A0.06 (12)
N2—N1—C11—C1227.28 (15)C31—C3—C3A—C8A179.04 (11)
C16—C11—C12—C131.26 (19)C8A—C3A—C4—C3Ai0.65 (6)
N1—C11—C12—C13176.14 (12)C3—C3A—C4—C3Ai179.77 (14)
C11—C12—C13—C140.6 (2)C8Ai—N8—C8A—N1179.48 (12)
C12—C13—C14—C150.5 (2)C8Ai—N8—C8A—C3A0.76 (7)
C13—C14—C15—C160.9 (3)N2—N1—C8A—N8178.68 (8)
C14—C15—C16—C110.2 (2)C11—N1—C8A—N86.02 (17)
C12—C11—C16—C150.87 (19)N2—N1—C8A—C3A0.26 (11)
N1—C11—C16—C15176.49 (12)C11—N1—C8A—C3A175.05 (10)
C8A—N1—N2—C30.30 (12)C4—C3A—C8A—N81.51 (14)
C11—N1—N2—C3175.58 (9)C3—C3A—C8A—N8178.79 (9)
N1—N2—C3—C3A0.21 (13)C4—C3A—C8A—N1179.57 (8)
N1—N2—C3—C31178.94 (10)C3—C3A—C8A—N10.13 (11)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. JP thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAbramos, M. A., Ceulemans, E., Jackers, C., der Auweraer, M. & Dehaen, W. (2001). Tetrahedron, 57, 9123–9129.  Web of Science CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrazzini, B., Cascarano, G. L.,De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10, Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds