Download citation
Download citation
link to html
In the title compound, {[Cu2(SO4)2(C3H6N2O2)2(H2O)4]·2H2O}, two differently coordinated Cu atoms are bridged by the sulfate groups, forming a polymeric chain extending along the c axis. One Cu atom is coordinated by two malonamide mol­ecules and two sulfate groups, while the other is coordinated by four water mol­ecules and two sulfate groups. Both Cu atoms lie on centers of symmetry. An extensive three-dimensional hydrogen-bonding network involves the uncoordinated water mol­ecules and stabilizes the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806014681/cv2036sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806014681/cv2036Isup2.hkl
Contains datablock I

CCDC reference: 610740

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.039
  • wR factor = 0.097
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

catena-Poly[[[tetraaquacopper(II)]-µ-sulfato-κ2O:O'- [bis(malonamide-κ2O,O')copper(II)]-µ-sulfato-κ2O:O'] dihydrate] top
Crystal data top
[Cu2(SO4)2(C3H6N2O2)2(H2O)4]·2H2OZ = 1
Mr = 631.50F(000) = 322
Triclinic, P1Dx = 2.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7953 (10) ÅCell parameters from 3044 reflections
b = 7.1236 (11) Åθ = 6.4–52.0°
c = 12.2249 (19) ŵ = 2.35 mm1
α = 78.692 (3)°T = 120 K
β = 77.817 (3)°Prism, blue
γ = 64.214 (2)°0.15 × 0.15 × 0.1 mm
V = 517.18 (14) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1996 independent reflections
Radiation source: normal-focus sealed tube1813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 88
Tmin = 0.684, Tmax = 0.790k = 88
4014 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.045P)2 + 2.25P]
where P = (Fo2 + 2Fc2)/3
1996 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.00867 (17)
Cu20.50000.00000.50000.00968 (17)
S10.80296 (13)0.10775 (12)0.27311 (7)0.0089 (2)
O10.7350 (4)0.0142 (4)0.1673 (2)0.0144 (5)
O20.6801 (4)0.0449 (4)0.3628 (2)0.0127 (5)
O30.7612 (4)0.2990 (4)0.2587 (2)0.0130 (5)
O41.0448 (4)0.1663 (4)0.3082 (2)0.0129 (5)
O50.5661 (4)0.3007 (4)0.0253 (2)0.0117 (5)
O60.7546 (4)0.0391 (4)0.0686 (2)0.0117 (5)
O70.5465 (4)0.2790 (4)0.4181 (2)0.0119 (5)
H7A0.61610.29350.36750.018*
H7B0.62270.37300.45780.018*
O80.2143 (4)0.1182 (4)0.4022 (2)0.0130 (5)
H8A0.10960.20410.43360.020*
H8B0.18480.02470.36190.020*
N10.6786 (5)0.6172 (5)0.1273 (3)0.0159 (6)
H1N10.75980.70230.18100.019*
H2N10.61110.65560.08540.019*
N21.0589 (5)0.2615 (5)0.1450 (3)0.0151 (6)
H1N21.13220.38460.18500.018*
H2N21.12380.17220.11730.018*
C10.6601 (5)0.4235 (5)0.1063 (3)0.0095 (6)
C20.7479 (5)0.3524 (5)0.1857 (3)0.0103 (7)
H2A0.85650.47730.22520.012*
H2B0.62470.27970.24320.012*
C30.8565 (5)0.2073 (5)0.1280 (3)0.0110 (7)
O1W1.1794 (4)0.3421 (4)0.5112 (2)0.0139 (5)
H1W11.18620.32050.44890.021*
H2W11.24660.28510.55920.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0093 (3)0.0077 (3)0.0106 (3)0.0042 (2)0.0042 (2)0.0000 (2)
Cu20.0083 (3)0.0093 (3)0.0112 (3)0.0033 (2)0.0015 (2)0.0010 (2)
S10.0085 (4)0.0103 (4)0.0090 (4)0.0043 (3)0.0025 (3)0.0010 (3)
O10.0151 (12)0.0205 (13)0.0105 (12)0.0093 (10)0.0009 (9)0.0043 (10)
O20.0138 (12)0.0106 (11)0.0124 (12)0.0039 (9)0.0048 (9)0.0021 (9)
O30.0165 (12)0.0103 (11)0.0161 (12)0.0081 (10)0.0063 (10)0.0008 (9)
O40.0096 (12)0.0144 (12)0.0131 (12)0.0041 (10)0.0011 (9)0.0007 (9)
O50.0128 (12)0.0117 (12)0.0124 (12)0.0054 (9)0.0052 (9)0.0009 (9)
O60.0133 (12)0.0103 (11)0.0141 (12)0.0062 (9)0.0054 (9)0.0002 (9)
O70.0133 (12)0.0104 (11)0.0126 (12)0.0042 (9)0.0047 (9)0.0008 (9)
O80.0114 (12)0.0131 (12)0.0142 (12)0.0048 (9)0.0026 (10)0.0004 (9)
N10.0226 (16)0.0121 (14)0.0188 (15)0.0096 (12)0.0132 (13)0.0028 (12)
N20.0117 (14)0.0131 (14)0.0216 (16)0.0059 (12)0.0076 (12)0.0028 (12)
C10.0069 (15)0.0108 (15)0.0105 (15)0.0027 (12)0.0019 (12)0.0023 (12)
C20.0108 (15)0.0097 (15)0.0117 (15)0.0046 (13)0.0035 (13)0.0010 (12)
C30.0123 (16)0.0103 (15)0.0118 (16)0.0044 (13)0.0024 (13)0.0041 (12)
O1W0.0164 (12)0.0146 (12)0.0129 (12)0.0084 (10)0.0015 (10)0.0020 (9)
Geometric parameters (Å, º) top
Cu1—O12.304 (2)O6—C31.262 (4)
Cu1—O1i2.304 (2)O7—H7A0.8201
Cu1—O5i1.962 (2)O7—H7B0.8200
Cu1—O51.962 (2)O8—H8A0.8201
Cu1—O6i1.969 (2)O8—H8B0.8200
Cu1—O61.969 (2)N1—C11.308 (4)
Cu2—O2ii2.415 (2)N1—H1N10.9000
Cu2—O22.415 (2)N1—H2N10.9001
Cu2—O7ii1.964 (2)N2—C31.308 (5)
Cu2—O71.964 (2)N2—H1N20.9000
Cu2—O81.975 (2)N2—H2N20.9000
Cu2—O8ii1.975 (2)C1—C21.501 (5)
S1—O11.465 (3)C2—C31.506 (4)
S1—O31.480 (2)C2—H2A0.9900
S1—O21.486 (2)C2—H2B0.9900
S1—O41.495 (2)O1W—H1W10.8199
O5—C11.262 (4)O1W—H2W10.8200
O5i—Cu1—O5180.0O1—S1—O4108.70 (14)
O5i—Cu1—O184.37 (9)O3—S1—O4108.72 (14)
O1—Cu1—O595.63 (9)O2—S1—O4109.25 (14)
O6i—Cu1—O195.51 (9)S1—O1—Cu1141.05 (15)
O1—Cu1—O684.49 (9)S1—O2—Cu2130.66 (14)
O5i—Cu1—O6i93.11 (10)C1—O5—Cu1123.5 (2)
O5—Cu1—O6i86.89 (10)C3—O6—Cu1121.7 (2)
O5i—Cu1—O686.89 (10)Cu2—O7—H7A105.5
O5—Cu1—O693.11 (10)Cu2—O7—H7B112.0
O6i—Cu1—O6180.00 (17)H7A—O7—H7B107.2
O5i—Cu1—O1i95.63 (9)Cu2—O8—H8A116.3
O5—Cu1—O1i84.37 (9)Cu2—O8—H8B110.9
O6i—Cu1—O1i84.49 (9)H8A—O8—H8B111.8
O6—Cu1—O1i95.51 (9)C1—N1—H1N1117.8
O1—Cu1—O1i180.00 (18)C1—N1—H2N1117.1
O7ii—Cu2—O7180.00 (13)H1N1—N1—H2N1125.1
O7ii—Cu2—O292.37 (9)C3—N2—H1N2121.0
O2—Cu2—O787.63 (9)C3—N2—H2N2119.0
O8—Cu2—O2ii90.61 (9)H1N2—N2—H2N2120.0
O8ii—Cu2—O2ii89.39 (9)O5—C1—N1121.3 (3)
O2—Cu2—O889.39 (9)O5—C1—C2121.9 (3)
O8ii—Cu2—O290.61 (9)N1—C1—C2116.8 (3)
O7ii—Cu2—O891.09 (10)C1—C2—C3113.4 (3)
O7—Cu2—O888.91 (10)C1—C2—H2A108.9
O7ii—Cu2—O8ii88.91 (10)C3—C2—H2A108.9
O7—Cu2—O8ii91.09 (10)C1—C2—H2B108.9
O8—Cu2—O8ii180.0C3—C2—H2B108.9
O7ii—Cu2—O2ii87.63 (9)H2A—C2—H2B107.7
O7—Cu2—O2ii92.37 (9)O6—C3—N2121.8 (3)
O2ii—Cu2—O2180.0O6—C3—C2121.4 (3)
O1—S1—O3110.95 (14)N2—C3—C2116.8 (3)
O1—S1—O2110.31 (14)H1W1—O1W—H2W1108.5
O3—S1—O2108.88 (14)
O3—S1—O1—Cu123.8 (3)O6—Cu1—O5—C129.9 (3)
O2—S1—O1—Cu196.9 (3)O1—Cu1—O5—C1114.6 (2)
O4—S1—O1—Cu1143.3 (2)O1i—Cu1—O5—C165.4 (2)
O5i—Cu1—O1—S1136.4 (3)O5i—Cu1—O6—C3165.0 (3)
O5—Cu1—O1—S143.6 (3)O5—Cu1—O6—C315.0 (3)
O6i—Cu1—O1—S143.8 (3)O1—Cu1—O6—C3110.4 (3)
O6—Cu1—O1—S1136.2 (3)O1i—Cu1—O6—C369.6 (3)
O1—S1—O2—Cu2134.93 (17)Cu1—O5—C1—N1172.2 (2)
O3—S1—O2—Cu213.0 (2)Cu1—O5—C1—C25.3 (4)
O4—S1—O2—Cu2105.65 (18)O5—C1—C2—C339.6 (4)
O7ii—Cu2—O2—S1170.30 (18)N1—C1—C2—C3142.8 (3)
O7—Cu2—O2—S19.70 (18)Cu1—O6—C3—N2158.7 (3)
O8—Cu2—O2—S198.64 (18)Cu1—O6—C3—C223.1 (4)
O8ii—Cu2—O2—S181.36 (18)C1—C2—C3—O656.3 (4)
O6i—Cu1—O5—C1150.1 (3)C1—C2—C3—N2125.4 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.821.802.618 (3)175
O7—H7B···O1Wiii0.821.952.714 (3)156
O8—H8A···O1Wii0.821.972.765 (3)162
O8—H8B···O4iv0.821.922.704 (3)159
N1—H1N1···O4v0.902.072.949 (4)166
N1—H2N1···O5vi0.902.143.029 (4)171
N2—H1N2···O3v0.902.122.985 (4)162
N2—H2N2···O1vii0.902.182.943 (4)143
O1W—H1W1···O40.822.052.798 (3)151
O1W—H2W1···O2viii0.822.002.761 (3)155
Symmetry codes: (ii) x+1, y, z1; (iii) x+2, y1, z1; (iv) x1, y, z; (v) x+2, y1, z; (vi) x+1, y1, z; (vii) x+2, y, z; (viii) x+2, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds