Download citation
Download citation
link to html
The crystal structure of the title compound, [Ni(C20H24N8)]Cl2·2H2O, consists of NiII complex cations, Cl anions and uncoordinated water mol­ecules. The NiII ion is located on an inversion center and is chelated by two (imidazol-4-ylmeth­yl)(2-pyridylmeth­yl)amine (IPA) ligands in a distorted octa­hedral coordination. The tridentate IPA ligand displays the facial configuration. Hydrogen bonding stabilizes the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806016667/xu2040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806016667/xu2040Isup2.hkl
Contains datablock I

CCDC reference: 611241

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.085
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Bis[(imidazol-4-ylmethyl)(2-pyridylmethyl)amine-κ3N,N',N'']nickel(II) dichloride dihydrate top
Crystal data top
[Ni(C10H12N4)2]Cl2·2H2OF(000) = 564
Mr = 542.12Dx = 1.484 Mg m3
Monoclinic, P21/cMelting point: 252(2)°C decomposed K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7738 (18) ÅCell parameters from 25 reflections
b = 19.066 (4) Åθ = 8.4–12.2°
c = 7.9456 (16) ŵ = 1.05 mm1
β = 114.09 (3)°T = 298 K
V = 1213.4 (5) Å3Prism, purple
Z = 20.58 × 0.42 × 0.36 mm
Data collection top
Rigaku AFC-7S
diffractometer
1928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ω–2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 023
Tmin = 0.657, Tmax = 0.689l = 89
2533 measured reflections3 standard reflections every 150 reflections
2381 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5253P]
where P = (Fo2 + 2Fc2)/3
2381 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The scan width was 1.58 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 5 scans to achieve I/σ(I) > 15). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.03705 (13)
Cl0.96725 (8)0.35589 (3)0.77621 (10)0.0633 (2)
O10.1825 (3)0.71746 (12)0.9600 (3)0.0838 (7)
H1W0.13940.75910.90530.126*
H2W0.12760.70781.03490.126*
N10.5823 (2)0.59898 (9)0.4578 (2)0.0404 (4)
N20.7471 (2)0.49902 (9)0.7137 (3)0.0439 (4)
H2N0.79200.45570.71840.053*
N30.4445 (2)0.54798 (9)0.7013 (3)0.0452 (4)
N40.3919 (3)0.62518 (11)0.8759 (3)0.0607 (6)
H4N0.33870.65470.91360.073*
C10.4888 (3)0.65189 (11)0.3550 (3)0.0467 (5)
H10.37470.64470.28990.056*
C20.5542 (3)0.71563 (13)0.3425 (4)0.0555 (6)
H20.48600.75050.26730.067*
C30.7205 (3)0.72778 (13)0.4412 (4)0.0617 (7)
H30.76740.77080.43430.074*
C40.8165 (3)0.67525 (13)0.5504 (4)0.0564 (6)
H40.92960.68270.62110.068*
C50.7456 (3)0.61135 (12)0.5555 (3)0.0437 (5)
C60.8476 (3)0.55058 (13)0.6650 (4)0.0559 (6)
H6A0.90010.52740.59390.067*
H6B0.93540.56820.77720.067*
C70.7361 (3)0.51295 (13)0.8902 (3)0.0541 (6)
H7A0.83570.53760.97170.065*
H7B0.73060.46880.94820.065*
C80.5853 (3)0.55610 (12)0.8630 (3)0.0461 (5)
C90.5561 (4)0.60332 (14)0.9721 (3)0.0572 (6)
H90.63040.61831.08810.069*
C100.3315 (3)0.59140 (13)0.7123 (4)0.0529 (6)
H100.22510.59780.62000.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02828 (19)0.0346 (2)0.0413 (2)0.00179 (14)0.00716 (15)0.00352 (16)
Cl0.0423 (3)0.0526 (4)0.0797 (5)0.0067 (3)0.0094 (3)0.0039 (3)
O10.0800 (14)0.0953 (16)0.0796 (14)0.0421 (12)0.0360 (12)0.0278 (12)
N10.0326 (9)0.0389 (9)0.0453 (10)0.0032 (7)0.0113 (7)0.0040 (7)
N20.0336 (9)0.0366 (9)0.0517 (11)0.0011 (7)0.0074 (8)0.0015 (8)
N30.0413 (10)0.0426 (10)0.0469 (10)0.0015 (8)0.0131 (8)0.0030 (8)
N40.0745 (15)0.0511 (12)0.0694 (14)0.0041 (11)0.0425 (13)0.0032 (10)
C10.0403 (11)0.0422 (12)0.0510 (13)0.0003 (9)0.0118 (10)0.0029 (10)
C20.0588 (15)0.0403 (12)0.0627 (15)0.0011 (11)0.0200 (12)0.0005 (11)
C30.0627 (16)0.0461 (14)0.0737 (18)0.0126 (12)0.0250 (14)0.0018 (12)
C40.0419 (12)0.0546 (14)0.0669 (16)0.0132 (11)0.0164 (11)0.0042 (12)
C50.0337 (10)0.0470 (12)0.0474 (12)0.0035 (9)0.0136 (9)0.0031 (10)
C60.0312 (11)0.0533 (14)0.0732 (17)0.0014 (10)0.0113 (11)0.0071 (12)
C70.0502 (14)0.0492 (14)0.0472 (13)0.0029 (10)0.0040 (11)0.0005 (10)
C80.0499 (13)0.0426 (12)0.0399 (11)0.0056 (10)0.0125 (10)0.0011 (9)
C90.0665 (16)0.0560 (15)0.0470 (13)0.0063 (12)0.0211 (12)0.0055 (11)
C100.0471 (13)0.0540 (14)0.0586 (15)0.0021 (11)0.0226 (11)0.0022 (12)
Geometric parameters (Å, º) top
Ni—N12.0960 (18)C1—C21.365 (3)
Ni—N1i2.0960 (18)C1—H10.9300
Ni—N2i2.140 (2)C2—C31.365 (4)
Ni—N22.140 (2)C2—H20.9300
Ni—N32.0657 (19)C3—C41.367 (4)
Ni—N3i2.0657 (19)C3—H30.9300
O1—H1W0.9092C4—C51.376 (3)
O1—H2W0.9242C4—H40.9300
N1—C51.343 (3)C5—C61.505 (3)
N1—C11.346 (3)C6—H6A0.9700
N2—C71.469 (3)C6—H6B0.9700
N2—C61.474 (3)C7—C81.497 (3)
N2—H2N0.9100C7—H7A0.9700
N3—C101.322 (3)C7—H7B0.9700
N3—C81.380 (3)C8—C91.345 (3)
N4—C101.350 (3)C9—H90.9300
N4—C91.390 (3)C10—H100.9300
N4—H4N0.8600
N1—Ni—N280.29 (7)C3—C2—C1119.5 (2)
N1i—Ni—N299.71 (7)C3—C2—H2120.3
N3—Ni—N3i180.00 (6)C1—C2—H2120.3
N1—Ni—N386.03 (7)C2—C3—C4118.5 (2)
N3i—Ni—N193.97 (7)C2—C3—H3120.7
N3—Ni—N1i93.97 (7)C4—C3—H3120.7
N3i—Ni—N1i86.03 (7)C3—C4—C5119.9 (2)
N1—Ni—N1i180.0C3—C4—H4120.1
N3—Ni—N2i97.34 (7)C5—C4—H4120.1
N3i—Ni—N2i82.66 (7)N1—C5—C4121.8 (2)
N1—Ni—N2i99.71 (7)N1—C5—C6116.19 (19)
N1i—Ni—N2i80.29 (7)C4—C5—C6122.0 (2)
N2—Ni—N382.66 (7)N2—C6—C5112.79 (18)
N3i—Ni—N297.34 (7)N2—C6—H6A109.0
N2i—Ni—N2180.0C5—C6—H6A109.0
H1W—O1—H2W105.0N2—C6—H6B109.0
C5—N1—C1117.49 (19)C5—C6—H6B109.0
C5—N1—Ni114.94 (14)H6A—C6—H6B107.8
C1—N1—Ni127.41 (14)N2—C7—C8111.09 (19)
C7—N2—C6114.17 (19)N2—C7—H7A109.4
C7—N2—Ni108.44 (14)C8—C7—H7A109.4
C6—N2—Ni107.86 (14)N2—C7—H7B109.4
C7—N2—H2N108.8C8—C7—H7B109.4
C6—N2—H2N108.8H7A—C7—H7B108.0
Ni—N2—H2N108.8C9—C8—N3109.9 (2)
C10—N3—C8106.19 (19)C9—C8—C7131.7 (2)
C10—N3—Ni138.49 (17)N3—C8—C7118.4 (2)
C8—N3—Ni111.46 (15)C8—C9—N4105.9 (2)
C10—N4—C9107.3 (2)C8—C9—H9127.1
C10—N4—H4N126.3N4—C9—H9127.1
C9—N4—H4N126.3N3—C10—N4110.6 (2)
N1—C1—C2122.8 (2)N3—C10—H10124.7
N1—C1—H1118.6N4—C10—H10124.7
C2—C1—H1118.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Clii0.912.293.194 (2)170
O1—H2W···Cliii0.922.333.213 (3)159
N2—H2N···Cl0.912.373.262 (2)167
N4—H4N···O10.861.962.814 (4)170
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds