metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[benzyl­tri­methyl­ammonium [cadmium(II)-tri-μ2-thio­cyanato]]

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Panjab University, Chandigarh 160 014, India, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rpsharmapu@yahoo.co.in

(Received 1 June 2006; accepted 14 June 2006; online 23 June 2006)

The title compound, {(C10H16N)[Cd(SCN)3]}n, contains [(C6H5CH2)N(CH3)3]+ cations lying between one-dimensional chains of stoichiometry {[Cd(SCN)3]}n. Each CdII ion is 3N,3S-hexa­coordinated by thio­cyanate ligands, in an octa­hedral fac arrangement. The asymmetric unit contains two cations and two anions.

Comment

In recent years, studies of the synthesis and properties of semiconductor materials such as CdS and CdSe have become an area of inter­est owing to the great scope for fundamental understanding of materials as well as potential technological applications (Zhang et al., 1999[Zhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157-195.]), such as light-emitting devices, non-linear optical devices, solar cells and biological labels. As a result, the search for new precursors, such as salts containing [Cd(SCN)3], is receiving much attention. As the d10 configuration and softness of CdII permit a wide variety of geometries and coordination numbers, especially with the ambidentate ligand thio­cyanate (SCN), various structural types have been observed. Which structural type occurs depends on the size, shape and symmetry of the counter-cations and also on the ratio of Cd2+ to SCN ions. Thus, the structures of a number of one-dimensional single chains (Zhang et al., 2001[Zhang, H., Wang, X., Zelmon, D. E. & Teo, B. K. (2001). Inorg. Chem. 40, 1501-1507.]), two-dimensional networks (Zhang et al., 1997[Zhang, H., Wang, X., Zhu, H., Xiao, W. & Teo, B. K. (1997). J. Am. Chem. Soc. 119, 5463-5464.]) and three-dimensional structures (Thiele & Messer, 1980[Thiele, G. & Messer, D. (1980). Z. Anorg. Allg. Chem. 464, 255-267.]) have been reported and reviewed (Sun et al., 2001[Sun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.]). Of special inter­est are the low-dimensional structural motifs, since these relate to highly anisotropic physical properties. In continuation of our inter­est in the supra­molecular chemistry of salts of simple metal complexes (Sharma et al., 2005[Sharma, R. P., Bala, R., Sharma, R., Vermani, B. K., Gill, D. S. & Venugopalan, P. (2005). J. Coord. Chem. 58, 309-316.], 2006[Sharma, R. P., Sharma, R., Bala, R., Vermani, B. K., Gill, D. S., Salas, J. M. & Quiros, M. (2006). J. Mol. Struct. 784, 222-227.]), the synthesis and characterization of the title compound, (I)[link], was undertaken.

[Scheme 1]

For (I)[link], structure determination revealed the presence of four crystallographically independent components in the solid state: two [(C6H5CH2)N(CH3)3]+ cations and two [Cd(SCN)3] anions (Fig. 1[link]). Each CdII ion is 3N,3S-hexa­coordinated, and adopts a slightly deformed fac octa­hedral geometry. Thus, each S atom is trans to an N atom. One of the thio­cyanate ions (S6/C6/N6) appears to be rotationally disordered about its central C atom, which modifies the CdII coordination geometry at 9% of the Cd2 metal sites. Both the Cd—S and Cd—N bond lengths show considerable variation (Table 1[link]). Similar distances (Cd—S = 2.688–2.743 Å and Cd—N = 2.279–2.379 Å) are observed in [(CH3)4N][Cd(SCN)3], which is also 3N,3S-coordinated (Kuniyasu et al., 1987[Kuniyasu, Y., Suzuli, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179-183.]). The average Cd—N—C and Cd—S—C angles in (I)[link] (142.11 and 98.93°, respectively) are also comparable with those in [(CH3)4N][Cd(SCN)3]. The {[Cd(SCN)3]}n chains (Fig. 2[link]) propagate along the b-axis direction, with [Cd(SCN)6] octa­hedra linked in a face-sharing manner via the shared SCN ligands. The [(C6H5CH2)N(CH3)3]+ cations occupy positions between the chains. It is generally believed that the relative arrangement of the anionic {[Cd(SCN)3]}n chains is strongly influenced by the size and shape of the cation. With larger cations, parallel alignment of the {[Cd(SCN)3]}n chains is expected; this is observed in (I)[link].

[Figure 1]
Figure 1
The contents of the asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level for non-H atoms. The minor disorder component is indicated by dashed bonds.
[Figure 2]
Figure 2
The polymeric {[Cd(SCN)3]}n chains extending along the b-axis direction.

Experimental

Analytical grade reagents were used without any further purification. Benzyl­trimethyl­ammonium chloride (1.0 g, 0.005 mol) was dissolved in 10 ml water, while CdCl2 (0.98 g, 0.004 mol) and ammonium thio­cyanate (1.22 g, 0.016 mol) were dissolved in 20 ml water by mechanical stirring. The solutions were mixed and a curd-like white solid precipitated immediately. This was filtered off and dried in air. Crystals of (I)[link] were obtained after redissolving the white solid in an acetone–water mixture (1:1) at room temperature. The salt decomposes at 393 K and is insoluble in organic solvents (C2H5OH, CCl4 and CH3Cl), but soluble in DMSO and hot water. IR (KBr, ν, cm−1): 2116 (s), 2087 (s, SCN), 1660 (m), 1553 (m), 1081 (s), 1028 (s), 1002 (s). 1H NMR (d6-DMSO, 298 K): δ 7.2 (s, 5H, HAr), 4.2 (s, 2H, ArCH2), 2.6 (s, 9H, CH3). 13C NMR (d6-DMSO, 298 K): δ 128–133 (Ar), 126 (SCN), 68 (ArC), 25 (CH3).

Crystal data
  • (C10H16N)[Cd(SCN)3]

  • Mr = 436.88

  • Monoclinic, P 21

  • a = 9.9668 (3) Å

  • b = 10.8210 (3) Å

  • c = 16.5299 (5) Å

  • β = 102.351 (2)°

  • V = 1741.50 (9) Å3

  • Z = 4

  • Dx = 1.666 Mg m−3

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 123 (2) K

  • Needle, colourless

  • 0.35 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.880, Tmax = 0.908

  • 31141 measured reflections

  • 7120 independent reflections

  • 5777 reflections with I > 2σ(I)

  • Rint = 0.060

  • θmax = 27.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.067

  • S = 1.06

  • 7120 reflections

  • 394 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0138P)2 + 2.3495P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3074 Friedel pairs

  • Flack parameter: −0.04 (2)

Table 1
Selected geometric parameters (Å, °)

Cd1—N1i 2.293 (5)
Cd1—N3ii 2.320 (5)
Cd1—N2ii 2.369 (5)
Cd1—S3 2.6749 (15)
Cd1—S1 2.7231 (15)
Cd1—S2 2.7350 (15)
Cd2—N4iii 2.294 (5)
Cd2—N5iv 2.341 (5)
Cd2—N6iv 2.361 (6)
Cd2—S5 2.6925 (15)
Cd2—S4 2.7097 (15)
Cd2—S6 2.762 (2)
C1—S1—Cd1 94.81 (18)
C2—S2—Cd1 99.67 (17)
C3—S3—Cd1 99.07 (18)
C4—S4—Cd2 95.24 (18)
C5—S5—Cd2 98.12 (18)
C1—N1—Cd1ii 155.1 (4)
C2—N2—Cd1i 144.8 (4)
C3—N3—Cd1i 146.7 (4)
C4—N4—Cd2iv 155.3 (4)
C5—N5—Cd2iii 149.3 (4)
C6—S6—Cd2 102.2 (2)
C6—N6—Cd2iii 140.2 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-1]; (ii) [-x+1, y-{\script{1\over 2}}, -z-1]; (iii) [-x+2, y-{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z].

One SCN ligand (S6/C6/N6) was modelled as disordered by a rotation about the C atom, giving two S and two N sites. The site occupancies of the two components were refined to 0.911 (7):0.089 (7). All H atoms were placed in geometrically idealized positions and refined using a riding model: C—H = 0.95 Å for CH, 0.99 Å for CH2 and 0.98 Å for CH3; Uiso(H) = 1.2Ueq(C) for CH and CH2, and Uiso(H) = 1.5Ueq(C) for CH3. We have noted that many crystals from the sample were twinned so that they appeared C-centred monoclinic.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1976); software used to prepare material for publication: SHELXL97.

catena-Poly[benzyltrimethylammonium [cadmium(II)-tri-µ2-thiocyanato]] top
Crystal data top
(C10H16N)[Cd(SCN)3]F(000) = 872
Mr = 436.88Dx = 1.666 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 23608 reflections
a = 9.9668 (3) Åθ = 1.0–27.1°
b = 10.8210 (3) ŵ = 1.61 mm1
c = 16.5299 (5) ÅT = 123 K
β = 102.351 (2)°Needle, colourless
V = 1741.50 (9) Å30.35 × 0.08 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7120 independent reflections
Radiation source: fine-focus sealed tube5777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 27.1°, θmin = 1.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.880, Tmax = 0.908k = 1313
31141 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0138P)2 + 2.3495P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7120 reflectionsΔρmax = 0.92 e Å3
394 parametersΔρmin = 0.57 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.54939 (4)1.08483 (3)0.48099 (2)0.02172 (11)
Cd21.04903 (4)0.95438 (3)0.00501 (2)0.02304 (12)
S10.75935 (15)0.93665 (14)0.40456 (10)0.0332 (4)
S20.73753 (15)1.21949 (14)0.54232 (10)0.0324 (4)
S30.58885 (15)1.21984 (14)0.34235 (9)0.0289 (3)
S41.24706 (14)1.09470 (15)0.03894 (10)0.0347 (4)
S51.25651 (15)0.81422 (14)0.08814 (10)0.0322 (4)
N10.6246 (5)0.7116 (5)0.4534 (3)0.0304 (12)
N20.6041 (4)1.4486 (5)0.5656 (3)0.0301 (11)
N30.4838 (5)1.4480 (5)0.4084 (3)0.0308 (11)
N41.1085 (5)1.3203 (4)0.0389 (3)0.0294 (11)
N51.1295 (4)0.5817 (5)0.0633 (3)0.0282 (10)
N70.9758 (5)1.5170 (4)0.3537 (3)0.0278 (12)
N81.4800 (5)1.3837 (5)0.1731 (3)0.0277 (12)
C10.6774 (5)0.8053 (5)0.4350 (3)0.0245 (13)
C20.6582 (5)1.3533 (5)0.5551 (3)0.0205 (12)
C30.5262 (5)1.3537 (5)0.3828 (3)0.0216 (12)
C41.1641 (6)1.2271 (5)0.0387 (3)0.0276 (13)
C51.1788 (5)0.6776 (5)0.0729 (3)0.0231 (12)
C60.9806 (6)0.6968 (6)0.1253 (3)0.0275 (13)
C71.0872 (5)1.4559 (6)0.2890 (3)0.0269 (12)
H7A1.17731.49010.29370.032*
H7B1.07241.47740.23330.032*
C81.0916 (5)1.3183 (5)0.2964 (3)0.0246 (12)
C91.1779 (5)1.2627 (6)0.3405 (4)0.0342 (15)
H91.23591.31220.36600.041*
C101.1805 (6)1.1351 (6)0.3480 (4)0.0431 (18)
H101.24001.09740.37860.052*
C111.0970 (6)1.0634 (6)0.3112 (4)0.0429 (19)
H111.09680.97610.31760.051*
C121.0144 (6)1.1170 (6)0.2653 (4)0.0394 (16)
H120.95881.06680.23860.047*
C131.0112 (6)1.2443 (5)0.2575 (4)0.0334 (15)
H130.95361.28100.22530.040*
C140.8361 (5)1.4800 (5)0.3441 (4)0.0417 (17)
H14A0.76691.52790.38260.063*
H14B0.82721.49600.28720.063*
H14C0.82231.39170.35640.063*
C150.9914 (7)1.4849 (6)0.4392 (4)0.0453 (18)
H15A0.91951.52650.47980.068*
H15B0.98301.39530.44710.068*
H15C1.08181.51200.44660.068*
C160.9914 (7)1.6546 (6)0.3426 (4)0.0325 (16)
H16A0.97001.67850.28960.049*
H16B0.92831.69660.38790.049*
H16C1.08611.67840.34320.049*
C171.6052 (5)1.3104 (5)0.2175 (3)0.0304 (14)
H17A1.68921.35140.20780.036*
H17B1.60871.31250.27780.036*
C181.6058 (5)1.1769 (5)0.1900 (3)0.0254 (13)
C191.6736 (6)1.1449 (6)0.1271 (4)0.0298 (14)
H191.71561.20720.10040.036*
C201.6796 (6)1.0236 (6)0.1038 (4)0.0283 (14)
H201.72751.00220.06190.034*
C211.6171 (6)0.9331 (6)0.1405 (3)0.0302 (14)
H211.62220.84950.12390.036*
C221.5470 (6)0.9625 (7)0.2011 (3)0.0315 (14)
H221.50100.89990.22500.038*
C231.5441 (5)1.0826 (6)0.2268 (3)0.0307 (13)
H231.49931.10210.27050.037*
C241.3513 (6)1.3350 (8)0.1914 (5)0.062 (2)
H24A1.33571.25070.16980.093*
H24B1.27431.38780.16520.093*
H24C1.35841.33420.25150.093*
C251.4688 (7)1.3821 (6)0.0818 (4)0.0435 (17)
H25A1.39191.43460.05500.065*
H25B1.45301.29730.06120.065*
H25C1.55421.41350.06900.065*
C261.5050 (8)1.5163 (6)0.2024 (5)0.057 (2)
H26A1.51791.51930.26280.085*
H26B1.42571.56720.17720.085*
H26C1.58741.54810.18610.085*
S61.02410 (17)0.83781 (15)0.14613 (13)0.0269 (6)0.911 (7)
N60.9539 (8)0.5939 (6)0.1144 (4)0.0315 (13)0.911 (7)
S6A0.890 (2)0.586 (2)0.1443 (11)0.020 (5)*0.089 (7)
N6A1.012 (6)0.816 (6)0.106 (4)0.026 (15)*0.089 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0238 (3)0.0129 (2)0.0283 (2)0.0003 (2)0.00529 (18)0.00081 (19)
Cd20.0250 (3)0.0116 (2)0.0341 (2)0.0008 (2)0.00975 (19)0.00035 (19)
S10.0286 (8)0.0151 (8)0.0492 (10)0.0008 (7)0.0069 (7)0.0002 (7)
S20.0312 (8)0.0200 (8)0.0515 (10)0.0061 (7)0.0211 (8)0.0064 (7)
S30.0395 (8)0.0176 (8)0.0287 (8)0.0013 (7)0.0052 (7)0.0011 (6)
S40.0292 (8)0.0170 (8)0.0629 (10)0.0011 (8)0.0215 (7)0.0004 (8)
S50.0293 (8)0.0170 (8)0.0449 (10)0.0048 (7)0.0043 (7)0.0013 (7)
N10.031 (3)0.015 (3)0.037 (3)0.002 (2)0.010 (2)0.004 (2)
N20.027 (2)0.021 (3)0.046 (3)0.000 (3)0.015 (2)0.010 (3)
N30.047 (3)0.022 (3)0.024 (3)0.003 (3)0.008 (2)0.003 (3)
N40.036 (3)0.012 (3)0.045 (3)0.002 (2)0.019 (2)0.002 (2)
N50.025 (2)0.012 (2)0.048 (3)0.007 (2)0.010 (2)0.006 (3)
N70.022 (3)0.021 (3)0.040 (3)0.002 (2)0.004 (2)0.002 (2)
N80.031 (3)0.024 (3)0.028 (3)0.010 (2)0.004 (2)0.001 (2)
C10.022 (3)0.017 (3)0.033 (3)0.010 (3)0.003 (2)0.002 (3)
C20.019 (3)0.025 (3)0.021 (3)0.003 (3)0.010 (2)0.002 (2)
C30.026 (3)0.022 (3)0.017 (3)0.004 (3)0.005 (2)0.004 (2)
C40.036 (3)0.018 (3)0.033 (3)0.012 (3)0.016 (3)0.001 (3)
C50.019 (3)0.026 (3)0.024 (3)0.005 (3)0.002 (2)0.002 (3)
C60.035 (3)0.026 (4)0.024 (3)0.004 (3)0.013 (3)0.001 (3)
C70.021 (3)0.028 (3)0.029 (3)0.003 (3)0.000 (2)0.007 (3)
C80.020 (3)0.021 (3)0.031 (3)0.005 (3)0.003 (2)0.005 (3)
C90.013 (3)0.043 (4)0.045 (4)0.000 (3)0.004 (3)0.011 (3)
C100.025 (4)0.035 (4)0.066 (5)0.006 (3)0.001 (3)0.023 (3)
C110.038 (4)0.021 (4)0.057 (5)0.006 (3)0.018 (3)0.008 (3)
C120.042 (4)0.025 (4)0.045 (4)0.001 (3)0.004 (3)0.009 (3)
C130.039 (4)0.029 (4)0.030 (3)0.008 (3)0.001 (3)0.002 (3)
C140.021 (3)0.018 (4)0.082 (5)0.001 (3)0.003 (3)0.013 (3)
C150.074 (5)0.029 (4)0.029 (4)0.012 (3)0.004 (3)0.010 (3)
C160.034 (4)0.021 (4)0.045 (4)0.002 (3)0.015 (3)0.001 (3)
C170.025 (3)0.036 (4)0.027 (3)0.007 (3)0.000 (3)0.002 (3)
C180.022 (3)0.026 (3)0.026 (3)0.000 (3)0.000 (3)0.004 (3)
C190.025 (3)0.033 (4)0.032 (4)0.006 (3)0.008 (3)0.001 (3)
C200.024 (3)0.035 (4)0.026 (3)0.002 (3)0.008 (3)0.006 (3)
C210.037 (4)0.020 (4)0.030 (3)0.001 (3)0.002 (3)0.004 (3)
C220.035 (4)0.028 (4)0.030 (3)0.007 (3)0.004 (3)0.001 (3)
C230.028 (3)0.039 (4)0.024 (3)0.007 (3)0.004 (2)0.002 (3)
C240.032 (4)0.070 (5)0.092 (6)0.015 (4)0.033 (4)0.018 (5)
C250.057 (4)0.034 (4)0.034 (4)0.004 (3)0.002 (3)0.003 (3)
C260.063 (5)0.035 (4)0.061 (5)0.024 (4)0.010 (4)0.015 (4)
S60.0374 (10)0.0153 (9)0.0305 (13)0.0010 (8)0.0127 (8)0.0029 (7)
N60.035 (4)0.020 (3)0.039 (3)0.001 (3)0.007 (3)0.004 (3)
Geometric parameters (Å, º) top
Cd1—N1i2.293 (5)C8—C131.385 (8)
Cd1—N3ii2.320 (5)C9—C101.387 (8)
Cd1—N2ii2.369 (5)C9—H90.950
Cd1—S32.6749 (15)C10—C111.373 (9)
Cd1—S12.7231 (15)C10—H100.950
Cd1—S22.7350 (15)C11—C121.362 (9)
Cd2—N4iii2.294 (5)C11—H110.950
Cd2—N6A2.34 (6)C12—C131.385 (8)
Cd2—N5iv2.341 (5)C12—H120.950
Cd2—N6iv2.361 (6)C13—H130.950
Cd2—S6Aiv2.664 (19)C14—H14A0.980
Cd2—S52.6925 (15)C14—H14B0.980
Cd2—S42.7097 (15)C14—H14C0.980
Cd2—S62.762 (2)C15—H15A0.980
S1—C11.663 (6)C15—H15B0.980
S2—C21.642 (6)C15—H15C0.980
S3—C31.661 (6)C16—H16A0.980
S4—C41.654 (6)C16—H16B0.980
S5—C51.663 (6)C16—H16C0.980
N1—C11.152 (7)C17—C181.514 (8)
N1—Cd1ii2.293 (5)C17—H17A0.990
N2—C21.159 (7)C17—H17B0.990
N2—Cd1i2.369 (5)C18—C231.396 (8)
N3—C31.150 (7)C18—C191.400 (7)
N3—Cd1i2.320 (5)C19—C201.373 (7)
N4—C41.150 (7)C19—H190.950
N4—Cd2iv2.294 (5)C20—C211.369 (8)
N5—C51.145 (7)C20—H200.950
N5—Cd2iii2.341 (5)C21—C221.377 (7)
N7—C141.490 (7)C21—H210.950
N7—C151.495 (7)C22—C231.370 (9)
N7—C161.504 (7)C22—H220.950
N7—C71.517 (7)C23—H230.950
N8—C241.478 (8)C24—H24A0.980
N8—C251.489 (7)C24—H24B0.980
N8—C261.518 (8)C24—H24C0.980
N8—C171.527 (7)C25—H25A0.980
C6—N61.168 (8)C25—H25B0.980
C6—N6A1.35 (6)C25—H25C0.980
C6—S6A1.50 (2)C26—H26A0.980
C6—S61.642 (6)C26—H26B0.980
C7—C81.496 (8)C26—H26C0.980
C7—H7A0.990N6—Cd2iii2.361 (6)
C7—H7B0.990S6A—Cd2iii2.664 (19)
C8—C91.379 (7)
N1i—Cd1—N3ii92.47 (17)C13—C8—C7120.5 (5)
N1i—Cd1—N2ii92.87 (17)C8—C9—C10120.5 (6)
N3ii—Cd1—N2ii82.29 (16)C8—C9—H9119.8
N1i—Cd1—S392.07 (12)C10—C9—H9119.8
N3ii—Cd1—S3173.44 (13)C11—C10—C9119.9 (6)
N2ii—Cd1—S392.76 (12)C11—C10—H10120.1
N1i—Cd1—S1178.92 (13)C9—C10—H10120.1
N3ii—Cd1—S187.47 (13)C12—C11—C10120.2 (6)
N2ii—Cd1—S188.19 (12)C12—C11—H11119.9
S3—Cd1—S188.08 (5)C10—C11—H11119.9
N1i—Cd1—S290.88 (13)C11—C12—C13120.3 (6)
N3ii—Cd1—S292.38 (12)C11—C12—H12119.9
N2ii—Cd1—S2173.60 (12)C13—C12—H12119.9
S3—Cd1—S292.28 (5)C12—C13—C8120.3 (6)
S1—Cd1—S288.05 (5)C12—C13—H13119.8
N4iii—Cd2—N6A77.7 (18)C8—C13—H13119.8
N4iii—Cd2—N5iv90.04 (16)N7—C14—H14A109.5
N6A—Cd2—N5iv91.2 (15)N7—C14—H14B109.5
N4iii—Cd2—N6iv95.52 (18)H14A—C14—H14B109.5
N6A—Cd2—N6iv170.4 (14)N7—C14—H14C109.5
N5iv—Cd2—N6iv82.0 (2)H14A—C14—H14C109.5
N4iii—Cd2—S6Aiv99.7 (4)H14B—C14—H14C109.5
N6A—Cd2—S6Aiv171.9 (17)N7—C15—H15A109.5
N5iv—Cd2—S6Aiv96.5 (5)N7—C15—H15B109.5
N4iii—Cd2—S590.59 (12)H15A—C15—H15B109.5
N6A—Cd2—S590.9 (15)N7—C15—H15C109.5
N5iv—Cd2—S5177.87 (13)H15A—C15—H15C109.5
N6iv—Cd2—S595.9 (2)H15B—C15—H15C109.5
S6Aiv—Cd2—S581.4 (5)N7—C16—H16A109.5
N4iii—Cd2—S4174.82 (12)N7—C16—H16B109.5
N6A—Cd2—S498.5 (17)H16A—C16—H16B109.5
N5iv—Cd2—S493.60 (12)N7—C16—H16C109.5
N6iv—Cd2—S488.64 (15)H16A—C16—H16C109.5
S6Aiv—Cd2—S483.5 (4)H16B—C16—H16C109.5
S5—Cd2—S485.90 (5)C18—C17—N8114.0 (4)
N4iii—Cd2—S689.88 (12)C18—C17—H17A108.8
N6A—Cd2—S613.5 (18)N8—C17—H17A108.8
N5iv—Cd2—S685.43 (12)C18—C17—H17B108.8
N6iv—Cd2—S6166.3 (2)N8—C17—H17B108.8
S6Aiv—Cd2—S6170.2 (4)H17A—C17—H17B107.7
S5—Cd2—S696.61 (5)C23—C18—C19118.1 (5)
S4—Cd2—S686.74 (5)C23—C18—C17122.4 (5)
C1—S1—Cd194.81 (18)C19—C18—C17119.5 (5)
C2—S2—Cd199.67 (17)C20—C19—C18120.1 (5)
C3—S3—Cd199.07 (18)C20—C19—H19119.9
C4—S4—Cd295.24 (18)C18—C19—H19119.9
C5—S5—Cd298.12 (18)C21—C20—C19120.6 (5)
C1—N1—Cd1ii155.1 (4)C21—C20—H20119.7
C2—N2—Cd1i144.8 (4)C19—C20—H20119.7
C3—N3—Cd1i146.7 (4)C20—C21—C22120.5 (6)
C4—N4—Cd2iv155.3 (4)C20—C21—H21119.8
C5—N5—Cd2iii149.3 (4)C22—C21—H21119.8
C14—N7—C15109.0 (5)C23—C22—C21119.5 (6)
C14—N7—C16109.2 (5)C23—C22—H22120.2
C15—N7—C16108.4 (5)C21—C22—H22120.2
C14—N7—C7111.6 (4)C22—C23—C18121.2 (5)
C15—N7—C7110.9 (4)C22—C23—H23119.4
C16—N7—C7107.7 (5)C18—C23—H23119.4
C24—N8—C25108.9 (5)N8—C24—H24A109.5
C24—N8—C26111.2 (6)N8—C24—H24B109.5
C25—N8—C26107.8 (5)H24A—C24—H24B109.5
C24—N8—C17111.8 (5)N8—C24—H24C109.5
C25—N8—C17111.0 (5)H24A—C24—H24C109.5
C26—N8—C17106.0 (5)H24B—C24—H24C109.5
N1—C1—S1177.0 (5)N8—C25—H25A109.5
N2—C2—S2178.2 (5)N8—C25—H25B109.5
N3—C3—S3177.9 (5)H25A—C25—H25B109.5
N4—C4—S4178.7 (5)N8—C25—H25C109.5
N5—C5—S5177.7 (5)H25A—C25—H25C109.5
N6—C6—N6A158 (3)H25B—C25—H25C109.5
N6A—C6—S6A156 (3)N8—C26—H26A109.5
N6—C6—S6175.6 (5)N8—C26—H26B109.5
S6A—C6—S6151.2 (8)H26A—C26—H26B109.5
C8—C7—N7114.0 (4)N8—C26—H26C109.5
C8—C7—H7A108.8H26A—C26—H26C109.5
N7—C7—H7A108.8H26B—C26—H26C109.5
C8—C7—H7B108.8C6—S6—Cd2102.2 (2)
N7—C7—H7B108.8C6—N6—Cd2iii140.2 (6)
H7A—C7—H7B107.7C6—S6A—Cd2iii103.4 (10)
C9—C8—C13118.8 (5)C6—N6A—Cd2142 (5)
C9—C8—C7120.7 (5)
N3ii—Cd1—S1—C140.4 (2)C7—C8—C9—C10179.2 (5)
N2ii—Cd1—S1—C142.0 (2)C8—C9—C10—C110.1 (10)
S3—Cd1—S1—C1134.8 (2)C9—C10—C11—C121.9 (9)
S2—Cd1—S1—C1132.8 (2)C10—C11—C12—C131.8 (9)
N1i—Cd1—S2—C226.0 (2)C11—C12—C13—C80.2 (9)
N3ii—Cd1—S2—C2118.5 (2)C9—C8—C13—C122.1 (8)
S3—Cd1—S2—C266.1 (2)C7—C8—C13—C12179.2 (5)
S1—Cd1—S2—C2154.1 (2)C24—N8—C17—C1864.1 (7)
N1i—Cd1—S3—C324.4 (2)C25—N8—C17—C1857.7 (6)
N2ii—Cd1—S3—C3117.4 (2)C26—N8—C17—C18174.6 (6)
N5iv—Cd2—S4—C432.0 (2)N8—C17—C18—C2388.5 (6)
N6iv—Cd2—S4—C449.9 (3)N8—C17—C18—C1993.3 (6)
S6Aiv—Cd2—S4—C464.1 (5)C23—C18—C19—C200.8 (8)
S5—Cd2—S4—C4145.9 (2)C17—C18—C19—C20177.4 (5)
S6—Cd2—S4—C4117.2 (2)C18—C19—C20—C211.4 (9)
N4iii—Cd2—S5—C531.1 (2)C19—C20—C21—C220.1 (9)
N6A—Cd2—S5—C546.6 (18)C20—C21—C22—C232.3 (8)
N6iv—Cd2—S5—C5126.7 (2)C21—C22—C23—C182.9 (8)
S6Aiv—Cd2—S5—C5130.8 (4)C19—C18—C23—C221.4 (8)
C14—N7—C7—C864.7 (6)C17—C18—C23—C22179.5 (5)
C15—N7—C7—C857.1 (6)N4iii—Cd2—S6—C627.9 (2)
C16—N7—C7—C8175.6 (5)N5iv—Cd2—S6—C6118.0 (2)
N7—C7—C8—C994.0 (6)N6iv—Cd2—S6—C6141.3 (7)
N7—C7—C8—C1387.4 (6)S5—Cd2—S6—C662.6 (2)
C13—C8—C9—C102.1 (8)S4—Cd2—S6—C6148.1 (2)
Symmetry codes: (i) x+1, y+1/2, z1; (ii) x+1, y1/2, z1; (iii) x+2, y1/2, z; (iv) x+2, y+1/2, z.
 

Acknowledgements

RB thanks the CSIR, New Delhi, India, for providing financial support for this work.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKuniyasu, Y., Suzuli, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179–183.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationSharma, R. P., Bala, R., Sharma, R., Vermani, B. K., Gill, D. S. & Venugopalan, P. (2005). J. Coord. Chem. 58, 309–316.  CSD CrossRef CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Vermani, B. K., Gill, D. S., Salas, J. M. & Quiros, M. (2006). J. Mol. Struct. 784, 222–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.  Web of Science CSD CrossRef Google Scholar
First citationThiele, G. & Messer, D. (1980). Z. Anorg. Allg. Chem. 464, 255–267.  CrossRef CAS Google Scholar
First citationZhang, H., Wang, X., Zelmon, D. E. & Teo, B. K. (2001). Inorg. Chem. 40, 1501–1507.  CSD CrossRef PubMed CAS Google Scholar
First citationZhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157–195.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H., Wang, X., Zhu, H., Xiao, W. & Teo, B. K. (1997). J. Am. Chem. Soc. 119, 5463–5464.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds