organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl­phen­yl)-4,5-di­phenyl-1H-imidazole

CROSSMARK_Color_square_no_text.svg

aSchool of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, bDepartment of Pharmacy, Bharathidasan University of Technology, Bharathidasan University, Tiruchirappalli 620 024, India, cFaculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England, and dMolecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: thamu_as@yahoo.com

(Received 26 May 2006; accepted 2 June 2006; online 14 June 2006)

In the title mol­ecule, C22H18N2, all bond lengths and angles are normal. Inter­molecular N—H⋯N hydrogen bonds with an N⋯N distance of 2.933 (2) Å, link the mol­ecules into chains running along the c axis. The crystal packing is further stabilized by van der Waals forces.

Comment

Several heterocyclic compounds with aryl substituents have previously been reported to exhibit anti-inflammatory activity in animals (Almirante et al., 1965[Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305-312.]; Marchetti et al., 1968[Marchetti, E., Mattalia, G. & Rosnati, V. (1968). J. Med. Chem. 11, 1092-1093.]). Of the various polyaryl heterocycles, certain 4,5-diphenyl-2-substituted imidazoles exhibited anti-inflamatory activity comparable to phenyl­butazone in the carrageenan rat paw edema test (Lombardino & Wiseman, 1974[Lombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182-1188.]). In view of this importance, we report here the crystal structure of the title compound, (I)[link], which is a 4,5-diphenyl-2-substituted imidazole derivative.

[Scheme 1]

The bond lengths and angles in (I)[link] (Fig. 1[link]) are in good agreement with the literature values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The imidazole ring makes dihedral angles of 41.2 (1), 31.5 (1) and 41.7 (1)° with the C21–C26, C41–C46 and C51–C56 aromatic rings, respectively. In the solid state, inter­molecular N—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into C(4) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running along the c axis. The crystal packing (Fig. 2[link]) is further stabilized by van der Waals forces.

[Figure 1]
Figure 1
View of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2]
Figure 2
The crystal packing of (I)[link], viewed along the a axis. The inter­molecular N—H⋯N hydrogen bonds are shown as dashed lines. All the H atoms, except those involved in hydrogen bonding, have been omitted for clarity.

Experimental

A mixture of benzil (5.25 g, 0.025 mol), ammonium acetate (l0 g, 0.129 mol) and 2-methyl­benzaldehyde (0.018 mol) in glacial acetic acid (50 ml) was heated under reflux for 1–2 h. The product was recrystallized from aqueous ethanol (yield 80%, m.p. 484–486 K).

Crystal data
  • C22H18N2

  • Mr = 310.38

  • Monoclinic, C c

  • a = 10.7538 (5) Å

  • b = 19.3999 (9) Å

  • c = 8.7900 (3) Å

  • β = 112.886 (2)°

  • V = 1689.44 (13) Å3

  • Z = 4

  • Dx = 1.220 Mg m−3

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 (2) K

  • Rod, colourless

  • 0.36 × 0.06 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.745, Tmax = 0.927 (expected range = 0.801–0.997)

  • 10671 measured reflections

  • 1945 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.06

  • 1945 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0523P)2 + 0.7664P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0089 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.88 (3) 2.07 (3) 2.933 (3) 168 (3)
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

The position of the amine H atom was determined from a difference Fourier map and refined freely along with its isotropic displacement parameter. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bond. The remaining H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). Owing to the absence of any significant anomalous scatterers in the mol­ecule, the 1433 Friedel pairs were merged before the final refinement.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

2-(2-Methylphenyl)-4,5-diphenyl-1H-imidazole top
Crystal data top
C22H18N2F(000) = 656
Mr = 310.38Dx = 1.220 Mg m3
Monoclinic, CcMelting point: 484 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 10.7538 (5) ÅCell parameters from 1980 reflections
b = 19.3999 (9) Åθ = 2.9–27.5°
c = 8.7900 (3) ŵ = 0.07 mm1
β = 112.886 (2)°T = 120 K
V = 1689.44 (13) Å3Rod, colourless
Z = 40.36 × 0.06 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1945 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1744 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
φ and ω scansh = 1113
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2525
Tmin = 0.745, Tmax = 0.927l = 1111
10671 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.7664P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1945 reflectionsΔρmax = 0.19 e Å3
223 parametersΔρmin = 0.17 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7086 (2)0.01344 (11)0.0732 (2)0.0210 (4)
H10.698 (3)0.0160 (15)0.007 (4)0.019 (7)*
N30.6705 (2)0.06587 (10)0.2743 (2)0.0211 (4)
C20.6360 (2)0.01323 (12)0.1697 (3)0.0204 (5)
C40.7688 (2)0.10230 (12)0.2418 (3)0.0204 (5)
C50.7926 (3)0.07057 (12)0.1148 (3)0.0215 (5)
C210.5397 (3)0.04191 (13)0.1607 (3)0.0241 (5)
C220.4158 (3)0.02859 (15)0.1729 (3)0.0292 (6)
C230.3333 (3)0.08493 (16)0.1644 (4)0.0398 (7)
H230.24860.07720.17190.048*
C240.3697 (4)0.15116 (17)0.1458 (4)0.0455 (8)
H240.31100.18840.14150.055*
C250.4917 (4)0.16377 (14)0.1332 (4)0.0393 (7)
H250.51730.20960.12010.047*
C260.5763 (3)0.10916 (14)0.1399 (3)0.0292 (6)
H260.66000.11750.13020.035*
C270.3689 (3)0.04324 (16)0.1896 (4)0.0361 (7)
H2710.27530.04150.18070.054*
H2720.37450.07250.10160.054*
H2730.42650.06230.29730.054*
C410.8327 (3)0.16304 (12)0.3411 (3)0.0220 (5)
C420.9678 (3)0.18026 (13)0.3771 (3)0.0261 (5)
H421.02070.15200.33720.031*
C431.0247 (3)0.23823 (14)0.4704 (3)0.0320 (6)
H431.11610.24960.49300.038*
C440.9492 (3)0.27985 (13)0.5311 (3)0.0329 (6)
H440.98850.31970.59440.039*
C450.8167 (3)0.26271 (14)0.4986 (3)0.0312 (6)
H450.76460.29090.53990.037*
C460.7595 (3)0.20471 (13)0.4064 (3)0.0260 (6)
H460.66880.19300.38700.031*
C510.8762 (2)0.08675 (13)0.0212 (3)0.0230 (5)
C520.9424 (3)0.03489 (15)0.0275 (3)0.0277 (6)
H520.93720.01140.00480.033*
C531.0161 (3)0.05019 (16)0.1228 (3)0.0325 (6)
H531.06090.01450.15560.039*
C541.0237 (3)0.11818 (17)0.1700 (4)0.0379 (7)
H541.07320.12890.23600.045*
C550.9597 (3)0.16969 (15)0.1210 (3)0.0345 (7)
H550.96580.21600.15280.041*
C560.8860 (3)0.15480 (14)0.0255 (3)0.0288 (6)
H560.84250.19080.00810.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0242 (11)0.0209 (10)0.0183 (10)0.0017 (8)0.0088 (9)0.0005 (8)
N30.0226 (10)0.0208 (9)0.0197 (9)0.0028 (8)0.0082 (8)0.0007 (8)
C20.0231 (13)0.0205 (11)0.0174 (11)0.0003 (10)0.0079 (10)0.0029 (9)
C40.0187 (12)0.0208 (11)0.0211 (11)0.0001 (9)0.0072 (9)0.0024 (9)
C50.0242 (13)0.0202 (11)0.0209 (11)0.0007 (10)0.0096 (10)0.0035 (9)
C210.0281 (14)0.0246 (12)0.0186 (11)0.0051 (10)0.0081 (10)0.0013 (10)
C220.0258 (14)0.0348 (15)0.0256 (12)0.0046 (11)0.0086 (11)0.0047 (11)
C230.0326 (17)0.0443 (17)0.0429 (17)0.0126 (14)0.0152 (14)0.0029 (14)
C240.045 (2)0.0362 (16)0.0511 (19)0.0205 (14)0.0139 (16)0.0030 (14)
C250.051 (2)0.0252 (14)0.0413 (16)0.0104 (13)0.0182 (15)0.0013 (12)
C260.0356 (16)0.0253 (13)0.0271 (13)0.0044 (11)0.0128 (12)0.0005 (10)
C270.0258 (14)0.0404 (16)0.0416 (16)0.0003 (13)0.0127 (13)0.0006 (13)
C410.0257 (13)0.0193 (11)0.0203 (10)0.0003 (10)0.0083 (10)0.0040 (9)
C420.0225 (13)0.0246 (12)0.0282 (13)0.0004 (10)0.0064 (11)0.0020 (10)
C430.0265 (15)0.0277 (14)0.0343 (14)0.0045 (11)0.0037 (12)0.0024 (11)
C440.0367 (17)0.0187 (12)0.0320 (14)0.0042 (11)0.0011 (12)0.0036 (11)
C450.0353 (16)0.0260 (13)0.0292 (13)0.0028 (12)0.0090 (12)0.0010 (11)
C460.0254 (14)0.0252 (13)0.0243 (11)0.0002 (11)0.0061 (10)0.0017 (10)
C510.0210 (13)0.0287 (13)0.0200 (11)0.0061 (11)0.0089 (10)0.0013 (10)
C520.0237 (13)0.0346 (14)0.0238 (12)0.0061 (11)0.0081 (10)0.0051 (11)
C530.0267 (15)0.0464 (17)0.0285 (13)0.0046 (13)0.0150 (12)0.0101 (12)
C540.0345 (17)0.0562 (19)0.0308 (14)0.0161 (14)0.0212 (13)0.0070 (14)
C550.0372 (16)0.0388 (16)0.0282 (13)0.0114 (13)0.0136 (12)0.0046 (12)
C560.0297 (15)0.0290 (13)0.0286 (13)0.0034 (11)0.0123 (12)0.0038 (11)
Geometric parameters (Å, º) top
N1—C21.358 (3)C41—C461.398 (4)
N1—C51.386 (3)C41—C421.401 (4)
N1—H10.88 (3)C42—C431.386 (4)
N3—C21.327 (3)C42—H420.9500
N3—C41.390 (3)C43—C441.390 (4)
C2—C211.470 (3)C43—H430.9500
C4—C51.383 (3)C44—C451.381 (4)
C4—C411.468 (3)C44—H440.9500
C5—C511.469 (3)C45—C461.384 (4)
C21—C261.395 (4)C45—H450.9500
C21—C221.401 (4)C46—H460.9500
C22—C231.391 (4)C51—C521.393 (4)
C22—C271.508 (4)C51—C561.399 (3)
C23—C241.372 (5)C52—C531.391 (4)
C23—H230.9500C52—H520.9500
C24—C251.380 (5)C53—C541.395 (4)
C24—H240.9500C53—H530.9500
C25—C261.383 (4)C54—C551.374 (4)
C25—H250.9500C54—H540.9500
C26—H260.9500C55—C561.391 (4)
C27—H2710.9800C55—H550.9500
C27—H2720.9800C56—H560.9500
C27—H2730.9800
C2—N1—C5108.2 (2)C46—C41—C42118.0 (2)
C2—N1—H1124.7 (18)C46—C41—C4120.0 (2)
C5—N1—H1126.9 (18)C42—C41—C4122.0 (2)
C2—N3—C4106.22 (19)C43—C42—C41120.5 (2)
N3—C2—N1110.9 (2)C43—C42—H42119.7
N3—C2—C21126.8 (2)C41—C42—H42119.7
N1—C2—C21122.2 (2)C42—C43—C44120.6 (3)
C5—C4—N3109.5 (2)C42—C43—H43119.7
C5—C4—C41130.3 (2)C44—C43—H43119.7
N3—C4—C41120.2 (2)C45—C44—C43119.4 (2)
C4—C5—N1105.3 (2)C45—C44—H44120.3
C4—C5—C51134.6 (2)C43—C44—H44120.3
N1—C5—C51120.0 (2)C44—C45—C46120.3 (3)
C26—C21—C22120.5 (2)C44—C45—H45119.8
C26—C21—C2117.3 (2)C46—C45—H45119.8
C22—C21—C2122.2 (2)C45—C46—C41121.2 (3)
C23—C22—C21117.2 (3)C45—C46—H46119.4
C23—C22—C27120.0 (3)C41—C46—H46119.4
C21—C22—C27122.8 (2)C52—C51—C56119.1 (2)
C24—C23—C22122.5 (3)C52—C51—C5121.0 (2)
C24—C23—H23118.8C56—C51—C5119.9 (2)
C22—C23—H23118.8C53—C52—C51120.7 (3)
C23—C24—C25120.0 (3)C53—C52—H52119.7
C23—C24—H24120.0C51—C52—H52119.7
C25—C24—H24120.0C52—C53—C54119.6 (3)
C24—C25—C26119.4 (3)C52—C53—H53120.2
C24—C25—H25120.3C54—C53—H53120.2
C26—C25—H25120.3C55—C54—C53120.0 (2)
C25—C26—C21120.5 (3)C55—C54—H54120.0
C25—C26—H26119.8C53—C54—H54120.0
C21—C26—H26119.8C54—C55—C56120.7 (3)
C22—C27—H271109.5C54—C55—H55119.7
C22—C27—H272109.5C56—C55—H55119.7
H271—C27—H272109.5C55—C56—C51119.9 (3)
C22—C27—H273109.5C55—C56—H56120.0
H271—C27—H273109.5C51—C56—H56120.0
H272—C27—H273109.5
C4—N3—C2—N10.9 (3)C2—C21—C26—C25178.9 (2)
C4—N3—C2—C21177.1 (2)C5—C4—C41—C46150.7 (3)
C5—N1—C2—N31.7 (3)N3—C4—C41—C4631.7 (3)
C5—N1—C2—C21178.1 (2)C5—C4—C41—C4231.0 (4)
C2—N3—C4—C50.2 (3)N3—C4—C41—C42146.6 (2)
C2—N3—C4—C41177.9 (2)C46—C41—C42—C432.0 (4)
N3—C4—C5—N11.1 (3)C4—C41—C42—C43179.6 (2)
C41—C4—C5—N1176.7 (2)C41—C42—C43—C440.6 (4)
N3—C4—C5—C51175.4 (3)C42—C43—C44—C450.4 (4)
C41—C4—C5—C516.8 (5)C43—C44—C45—C460.1 (4)
C2—N1—C5—C41.7 (3)C44—C45—C46—C411.4 (4)
C2—N1—C5—C51175.5 (2)C42—C41—C46—C452.4 (4)
N3—C2—C21—C26136.8 (3)C4—C41—C46—C45179.2 (2)
N1—C2—C21—C2639.0 (3)C4—C5—C51—C52142.6 (3)
N3—C2—C21—C2243.0 (4)N1—C5—C51—C5241.2 (3)
N1—C2—C21—C22141.2 (2)C4—C5—C51—C5639.7 (4)
C26—C21—C22—C230.4 (4)N1—C5—C51—C56136.4 (3)
C2—C21—C22—C23179.3 (2)C56—C51—C52—C530.8 (4)
C26—C21—C22—C27177.8 (2)C5—C51—C52—C53176.9 (3)
C2—C21—C22—C272.4 (4)C51—C52—C53—C540.1 (4)
C21—C22—C23—C240.3 (4)C52—C53—C54—C550.6 (4)
C27—C22—C23—C24178.6 (3)C53—C54—C55—C560.5 (5)
C22—C23—C24—C250.6 (5)C54—C55—C56—C510.3 (4)
C23—C24—C25—C260.1 (5)C52—C51—C56—C550.9 (4)
C24—C25—C26—C210.6 (4)C5—C51—C56—C55176.8 (3)
C22—C21—C26—C250.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.88 (3)2.07 (3)2.933 (3)168 (3)
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England). TS thanks Professors V. Parthasarathi, School of Physics and M. Nallu, School of Chemistry, Bharathidasan University, Tiruchirappalli, for their generous help.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAlmirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182–1188.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarchetti, E., Mattalia, G. & Rosnati, V. (1968). J. Med. Chem. 11, 1092–1093.  CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds