[Journal logo]

Volume 62 
Part 7 
Pages m1467-m1468  
July 2006  

Received 19 May 2006
Accepted 29 May 2006
Online 9 June 2006

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.011 Å
R = 0.049
wR = 0.092
Data-to-parameter ratio = 18.0
Details

Bis[2-(2-methylphenylimino)phenyl]mercury(II)

aSchool of Chemistry, University of Manchester, Sackville Street, Manchester, England
Correspondence e-mail: k.r.flower@manchester.ac.uk

The structure of the cyclomercurated 2-phenyliminophenyl title compound, [Hg(C14H12N)2], shows that the mercury coordination is essentially square planar

Comment

The structure of the title compound, (I)[link], is shown in Fig. 1[link]. Organomercurials are often used as transmetallation reagents in the synthesis of organometallic complexes (Roper & Wright, 1977[Roper, W. R. & Wright, L. J. (1977). J. Organomet. Chem. 142, C1-C6.]). Several years ago we reported a synthetic route for the preparation of a range of functionalized 1-mercurio-2-phenyliminophenyls (Flower et al., 2002[Flower, K. R., Howard, V. J., Naguthney, S., Pritchard, R. G., Warren, J. E. & McGown, A. T. (2002). Inorg. Chem. 41, 1907-1912.]) and from the structural data obtained concurred with a previous report of Batsanov (1998[Batsanov, A. S. (1998). J. Chem. Soc. Dalton Trans. pp. 1541-1546.]) that the van der Waals radius of mercury is in the range 2.0-2.2 Å, rather than the often quoted value of 1.55 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). Here, and in the following paper (Flower & Pritchard, 2006[Flower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1469-m1470.]), we report two additional structures of this type of compound. All of the bond lengths and angles in the two structures are as expected. The Hg-N distances in (I)[link] and bis-2-(2-isopropylphenylimnophenyl)mercury, (II), range from 2.787 (10) to 2.850 (10) Å and are comfortably within the sum of the van der Waals radii (3.5-3.7 Å), if the van der Waals radius of Hg is considered to be 2.0-2.2 Å, indicating significant Hg-N interactions. This gives rise to an overall distorted square-planar geometry at Hg in both cases. Other examples of square planar HgII complexes are known (Balasubramani et al., 2005[Balasubramani, K., Thomas, P., Bocelli, G. & Cantoni, A. (2005). J. Coord. Chem. 58, 1689-1694.]; Haid et al., 2003[Haid, R., Gutmann, R., Czermak, G., Langes, C., Oberhauser, W, Kopacka, H., Ongania, K.-H. & Bruggeller, P. (2003). Inorg. Chem. Commun. 6, 61-67.]; Cheng et al., 1994[Cheng, Y., Emge, T. J. & Brennan, J. G. (1994). Inorg. Chem. 33, 3711-3714.]).

[Scheme 1]
[Figure 1]
Figure 1
The molecular structure of (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are shown at the 30% probability level.

Experimental

Caution: preparation of an organomercurial. Organomercurials are extremely toxic. To Hg(C6H4-2-CHO)2 (1 g, 2.4 mmol) dissolved in ethanol (10 ml) containing p-toluenesulfonic acid (10 mg, 0.05 mmol) was added 2-methylaniline (0.56 g, 6 mmol) and the solution was refluxed for 5 h, during which time white crystals of (I)[link] precipitated. The crystalline material was collected by filtration, washed with water and dried in a desiccator. Yield 0.93 g, 68%. An analytically pure sample was obtained through recrystallization from hot ethanol, and crystals suitable for the diffraction study were grown by dissolving approximately 10 mg of (I)[link] in CH2Cl2 (0.2 ml) in a small vial (1 × 5 cm), layering ethanol (5 ml) on top and leaving the vial to to stand for 24 h. Elemental analysis C28H24HgN2 requires: C 57.56, H 4.11, N 4.76%; found: C 57.79, H 4.22, N 4.91%.

Crystal data
  • [Hg(C14H12N)2]

  • Mr = 589.08

  • Monoclinic, P 21 /c

  • a = 11.9925 (3) Å

  • b = 11.3864 (3) Å

  • c = 16.6542 (5) Å

  • [beta] = 97.6730 (10)°

  • V = 2253.79 (11) Å3

  • Z = 4

  • Dx = 1.736 Mg m-3

  • Mo K[alpha] radiation

  • [mu] = 6.85 mm-1

  • T = 293 (2) K

  • Plate, yellow

  • 0.2 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • [varphi] and [omega] scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.254, Tmax = 0.707

  • 14711 measured reflections

  • 5084 independent reflections

  • 3476 reflections with I > 2[sigma](I)

  • Rint = 0.086

  • [theta]max = 27.4°

Refinement
  • Refinement on F2

  • R[F2 > 2[sigma](F2)] = 0.050

  • wR(F2) = 0.092

  • S = 1.02

  • 5084 reflections

  • 283 parameters

  • H-atom parameters constrained

  • w = 1/[[sigma]2(Fo2) + (0.0284P)2 + 5.7069P] where P = (Fo2 + 2Fc2)/3

  • ([Delta]/[sigma])max = 0.001

  • [Delta][rho]max = 1.54 e Å-3

  • [Delta][rho]min = -1.64 e Å-3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00103 (15)

H atoms were positioned geometrically and treated as riding, with C-H = 0.93 and 0.96 Å, and with Uiso(H) values of 1.2 and 1.5 times Ueq(C). The highest residual peak is located 1.03 Å from Hg1 and deepest hole is located 0.92 Å from Hg1..

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888.]).

Acknowledgements

We thank the EPSRC Crystallographic Service, University of Southampton, for collecting the data.

References

Balasubramani, K., Thomas, P., Bocelli, G. & Cantoni, A. (2005). J. Coord. Chem. 58, 1689-1694. [CrossRef] [ChemPort]
Batsanov, A. S. (1998). J. Chem. Soc. Dalton Trans. pp. 1541-1546. [CrossRef]
Blessing, R. H. (1995). Acta Cryst. A51, 33-38. [CrossRef] [details]
Bondi, A. (1964). J. Phys. Chem. 68, 441-451. [CrossRef] [ChemPort] [ISI]
Cheng, Y., Emge, T. J. & Brennan, J. G. (1994). Inorg. Chem. 33, 3711-3714. [CrossRef] [ChemPort]
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. [CrossRef] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888. [CrossRef] [details]
Flower, K. R., Howard, V. J., Naguthney, S., Pritchard, R. G., Warren, J. E. & McGown, A. T. (2002). Inorg. Chem. 41, 1907-1912. [CrossRef] [PubMed] [ChemPort]
Flower, K. R. & Pritchard, R. G. (2006). Acta Cryst. E62, m1469-m1470. [CrossRef] [details]
Haid, R., Gutmann, R., Czermak, G., Langes, C., Oberhauser, W, Kopacka, H., Ongania, K.-H. & Bruggeller, P. (2003). Inorg. Chem. Commun. 6, 61-67. [CrossRef] [ChemPort]
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Roper, W. R. & Wright, L. J. (1977). J. Organomet. Chem. 142, C1-C6. [CrossRef] [ChemPort]
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.


Acta Cryst (2006). E62, m1467-m1468   [ doi:10.1107/S1600536806020149 ]