organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An ortho­rhom­bic polymorph of di­chloro­tris­(penta­fluoro­phen­yl)phospho­rane

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Manchester (North Campus), Manchester M60 1QD, England
*Correspondence e-mail: stephen.m.godfrey@manchester.ac.uk

(Received 5 June 2006; accepted 8 June 2006; online 16 June 2006)

An ortho­rhom­bic form of dichloro­tris(penta­fluoro­phen­yl)­phos­pho­rane, C18Cl2F15P, has been obtained as the product of the reaction between PhSeCl and (C6F5)3P, and is a polymorph of the previously reported monoclinic form obtained from the reaction of (C6F5)3P with Cl2. The mol­ecule displays nearly perfect trigonal–bipyramidal geometry, and features a number of inter­molecular F⋯F contacts, which lead to fluorous domains in the crystal packing.

Comment

Compounds of formula R3PCl2 are usually ionic in the solid state (Dillon et al., 1976[Dillon, K. B., Lynch, R. J., Reeve, R. N. & Waddington, T. C. (1976). J. Chem. Soc. Dalton Trans. pp. 1243-1248.]; Godfrey et al., 1996[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1996). Chem. Commun. pp. 2521-2522.], 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]; Ruthe et al., 1997[Ruthe, F., du Mont, W.-W. & Jones, P. G. (1997). Chem. Commun. pp. 1947-1948.]) and solution (Beveridge et al., 1966[Beveridge, A. D., Harris, G. S. & Inglis, F. (1966). J. Chem. Soc. A, pp. 520-528.]; Wiley & Stine, 1967[Wiley, G. A. & Stine, W. R. (1967). Tetrahedron Lett. 8, 2321-2324.]; Harris & Ali, 1968[Harris, G. S. & Ali, M. F. (1968). Tetrahedron Lett. 9, 37-38.]; Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]); however, mol­ecular five-coordinate trigonal–bipyramidal structures have been observed for R3 = Ph3, (C6F5)Ph2 and (C6F5)3 (Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]; Godfrey, McAuliffe, Pritchard & Sheffield, 1998[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1998). Chem. Commun. pp. 921-922.]). Whilst the trigonal–bipyramidal form of Ph3PCl2 ionizes in solution, the analogous compounds containing highly electron withdrawing C6F5 groups retain their trigonal–bipyramidal geometry in solution. We have previously described the structure of the monoclinic form of (C6F5)3PCl2 (space group P21/c), prepared from (C6F5)3P and dichlorine (Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]). We now report that the same compound is also formed when phenyl­selenenyl chloride is reacted with (C6F5)3P; however the crystals obtained were an ortho­rhom­bic polymorph of (C6F5)3PCl2, (I)[link] (see Fig. 1[link] and Table 1[link]).

[Scheme 1]

Compound (I)[link] displays nearly perfect trigonal–bipyramidal geometry, although neither of the two polymorphs of (C6F5)3PCl2 display crystallographically imposed D3 symmetry, unlike the analogous trigonal–bipyramidal (C6F5)3PBr2, space group R[\overline{3}]c (Godfrey, McAuliffe, Mushtaq et al., 1998[Godfrey, S. M., McAuliffe, C. A., Mushtaq, I., Pritchard, R. G. & Sheffield, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3815-3818.]). The P—Cl bonds in (I)[link] are nearly equivalent and slightly shorter than observed in the monoclinic polymorph [P—Cl = 2.211 (2) Å; Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]]. However, the P—Cl bonds are rather shorter than observed for (C6F5)Ph2PCl2 [P—Cl = 2.244 (2) and 2.241 (3) Å; Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]] and Ph3PCl2 [P—Cl = 2.225 (1)–2.280 (2) Å; Godfrey, McAuliffe, Pritchard & Sheffield, 1998[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1998). Chem. Commun. pp. 921-922.]), reflecting the increased net electron-withdrawing capability of three C6F5 groups. The Cl—P—Cl angle is essentially linear, and the remaining angles around the P atom are close to ideal trigonal–bipyramidal geometry. The C—F bonds in the mol­ecule vary in distance between 1.329 (3) and 1.349 (3) Å, with the C—F bonds to the para-F atoms being the shortest in each C6F5 group. A number of inter­molecular F⋯F inter­actions, shorter than the sum of the van der Waals radii of two F atoms, (2.94 Å), are observed, which vary in length between 2.700 (2) Å and 2.900 (2) Å. The extended structure thus features extensive aggregation of the fluorous domains.

[Figure 1]
Figure 1
The structure of (I)[link]. Displacement ellipsoids are shown at the 30% probability level.

Experimental

The title compound was prepared by addition of (C6F5)3P (Aldrich) (0.273 g, 5.0 × 10 −4 mol) to a freshly distilled diethyl ether solution (50 ml) containing PhSeCl (Aldrich) (0.196 g, 1.0 × 10−3 mol). The colour of the solution gradually changed from orange to yellow over several days. The solvent was reduced in volume to 10 ml, and colourless crystals of (I)[link] formed at 273 K over several weeks. The spectroscopic data of (I)[link] match the literature values (Godfrey et al., 1997[Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.]).

Crystal data
  • C18Cl2F15P

  • Mr = 603.05

  • Orthorhombic, P b c a

  • a = 16.7367 (5) Å

  • b = 11.3713 (2) Å

  • c = 19.9214 (5) Å

  • V = 3791.40 (16) Å3

  • Z = 8

  • Dx = 2.113 Mg m−3

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 150 (2) K

  • Prism, colourless

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.893, Tmax = 0.944

  • 19042 measured reflections

  • 3458 independent reflections

  • 2634 reflections with I > 2σ(I)

  • Rint = 0.071

  • θmax = 25.3°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.02

  • 3458 reflections

  • 325 parameters

  • w = 1/[σ2(Fo2) + (0.0439P)2 + 3.0443P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—P1 1.820 (3)
C7—P1 1.819 (3)
C13—P1 1.821 (3)
P1—Cl2 2.1995 (10)
P1—Cl1 2.2005 (10)
C7—P1—C1 118.64 (13)
C7—P1—C13 121.49 (13)
C1—P1—C13 119.86 (13)
C7—P1—Cl2 90.26 (9)
C1—P1—Cl2 90.37 (9)
C13—P1—Cl2 89.51 (9)
C7—P1—Cl1 90.12 (9)
C1—P1—Cl1 90.01 (9)
C13—P1—Cl1 89.74 (9)
Cl2—P1—Cl1 179.25 (5)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York, Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York, Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

dichlorotris(pentafluorophenyl)phosphorane top
Crystal data top
C18Cl2F15PF(000) = 2336
Mr = 603.05Dx = 2.113 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10582 reflections
a = 16.7367 (5) Åθ = 1.0–25.4°
b = 11.3713 (2) ŵ = 0.58 mm1
c = 19.9214 (5) ÅT = 150 K
V = 3791.40 (16) Å3Prism, colourless
Z = 80.2 × 0.15 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3458 independent reflections
Radiation source: Enraf Nonius FR5902634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 3.0°
φ or ω scans?h = 2016
Absorption correction: multi-scan
(Blessing, 1995)
k = 1313
Tmin = 0.893, Tmax = 0.944l = 2323
19042 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Secondary atom site location: difference Fourier map
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0439P)2 + 3.0443P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3458 reflectionsΔρmax = 0.38 e Å3
325 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49075 (17)0.6096 (2)0.37260 (13)0.0238 (6)
C20.55870 (17)0.5387 (2)0.37278 (14)0.0260 (6)
C30.55340 (19)0.4188 (3)0.37960 (14)0.0299 (7)
C40.48042 (19)0.3638 (2)0.38180 (13)0.0292 (7)
C50.41183 (18)0.4310 (2)0.37903 (14)0.0286 (7)
C60.41747 (17)0.5513 (2)0.37650 (14)0.0258 (6)
C70.41500 (17)0.8501 (2)0.33031 (14)0.0247 (6)
C80.37070 (17)0.7999 (2)0.27868 (13)0.0258 (6)
C90.30550 (17)0.8560 (2)0.25108 (13)0.0270 (6)
C100.28672 (18)0.9685 (3)0.27131 (15)0.0303 (7)
C110.33072 (18)1.0219 (2)0.32053 (15)0.0290 (7)
C120.39230 (18)0.9622 (2)0.35101 (14)0.0277 (6)
C130.58145 (17)0.8449 (2)0.40678 (14)0.0262 (6)
C140.62486 (17)0.7936 (2)0.45900 (13)0.0254 (6)
C150.69123 (19)0.8466 (3)0.48534 (14)0.0308 (7)
C160.71409 (18)0.9565 (3)0.46304 (15)0.0333 (7)
C170.67161 (19)1.0105 (2)0.41272 (15)0.0307 (7)
C180.60700 (18)0.9538 (2)0.38398 (14)0.0280 (6)
F20.63189 (10)0.58597 (14)0.36801 (8)0.0314 (4)
F30.62094 (11)0.35433 (14)0.38288 (8)0.0384 (4)
F40.47576 (12)0.24731 (14)0.38598 (8)0.0389 (5)
F50.33989 (11)0.37926 (14)0.37902 (9)0.0381 (4)
F60.34878 (10)0.61209 (14)0.37595 (8)0.0310 (4)
F80.38919 (10)0.69310 (13)0.25486 (8)0.0298 (4)
F90.26056 (10)0.80222 (16)0.20460 (8)0.0367 (4)
F100.22484 (11)1.02353 (16)0.24344 (9)0.0443 (5)
F110.31355 (11)1.13189 (13)0.33964 (9)0.0398 (4)
F120.43149 (10)1.01566 (14)0.40148 (8)0.0327 (4)
F140.60279 (10)0.68909 (13)0.48410 (8)0.0296 (4)
F150.73410 (11)0.79176 (17)0.53271 (8)0.0426 (5)
F160.77747 (12)1.00955 (17)0.49033 (9)0.0480 (5)
F170.69268 (12)1.11803 (14)0.39190 (9)0.0415 (5)
F180.56887 (10)1.00802 (14)0.33355 (9)0.0342 (4)
P10.49612 (4)0.76936 (6)0.36995 (3)0.02308 (18)
Cl10.43366 (4)0.77888 (6)0.46700 (3)0.02886 (19)
Cl20.55989 (4)0.76107 (6)0.27353 (3)0.02870 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (16)0.0259 (14)0.0204 (13)0.0007 (11)0.0001 (11)0.0002 (11)
C20.0227 (16)0.0316 (15)0.0238 (14)0.0006 (12)0.0013 (11)0.0023 (12)
C30.0336 (18)0.0323 (15)0.0237 (14)0.0099 (13)0.0007 (12)0.0003 (12)
C40.046 (2)0.0198 (13)0.0220 (14)0.0004 (13)0.0044 (13)0.0037 (11)
C50.0314 (17)0.0295 (14)0.0250 (14)0.0077 (13)0.0021 (12)0.0039 (12)
C60.0247 (16)0.0280 (14)0.0246 (14)0.0011 (12)0.0009 (11)0.0001 (12)
C70.0231 (15)0.0249 (13)0.0261 (14)0.0012 (11)0.0001 (12)0.0030 (12)
C80.0263 (16)0.0266 (14)0.0245 (14)0.0003 (12)0.0035 (12)0.0013 (12)
C90.0208 (15)0.0369 (15)0.0234 (14)0.0012 (12)0.0003 (12)0.0021 (12)
C100.0218 (16)0.0377 (16)0.0314 (16)0.0071 (13)0.0010 (13)0.0069 (13)
C110.0257 (16)0.0245 (14)0.0367 (17)0.0046 (12)0.0086 (13)0.0016 (12)
C120.0279 (16)0.0296 (14)0.0255 (14)0.0026 (12)0.0018 (12)0.0009 (12)
C130.0274 (16)0.0257 (14)0.0256 (14)0.0014 (12)0.0030 (12)0.0020 (12)
C140.0246 (16)0.0282 (14)0.0232 (14)0.0010 (12)0.0027 (11)0.0029 (12)
C150.0295 (17)0.0419 (17)0.0211 (14)0.0017 (14)0.0034 (12)0.0017 (13)
C160.0295 (18)0.0401 (17)0.0302 (16)0.0113 (14)0.0029 (13)0.0053 (14)
C170.0333 (18)0.0278 (14)0.0311 (15)0.0078 (13)0.0085 (13)0.0013 (13)
C180.0273 (16)0.0284 (14)0.0284 (15)0.0007 (12)0.0020 (13)0.0029 (12)
F20.0227 (9)0.0351 (9)0.0363 (9)0.0026 (7)0.0013 (7)0.0007 (7)
F30.0419 (11)0.0343 (9)0.0388 (10)0.0170 (8)0.0028 (8)0.0027 (8)
F40.0597 (13)0.0233 (8)0.0337 (9)0.0009 (8)0.0043 (8)0.0011 (7)
F50.0383 (11)0.0357 (9)0.0401 (10)0.0148 (8)0.0026 (8)0.0054 (8)
F60.0230 (9)0.0333 (9)0.0366 (9)0.0008 (7)0.0003 (7)0.0028 (7)
F80.0306 (9)0.0268 (8)0.0320 (9)0.0021 (7)0.0031 (7)0.0046 (7)
F90.0268 (10)0.0485 (10)0.0349 (9)0.0004 (8)0.0066 (8)0.0040 (8)
F100.0348 (11)0.0503 (11)0.0479 (11)0.0174 (9)0.0072 (9)0.0041 (9)
F110.0371 (11)0.0273 (8)0.0551 (11)0.0096 (8)0.0035 (9)0.0028 (8)
F120.0322 (10)0.0288 (8)0.0370 (10)0.0019 (7)0.0023 (8)0.0069 (7)
F140.0314 (10)0.0284 (8)0.0290 (8)0.0020 (7)0.0035 (7)0.0061 (7)
F150.0368 (11)0.0582 (12)0.0329 (9)0.0098 (9)0.0121 (8)0.0083 (9)
F160.0436 (12)0.0586 (12)0.0417 (10)0.0262 (10)0.0081 (9)0.0027 (9)
F170.0451 (12)0.0301 (9)0.0494 (11)0.0130 (8)0.0052 (9)0.0013 (8)
F180.0318 (10)0.0307 (9)0.0402 (10)0.0011 (7)0.0017 (8)0.0103 (8)
P10.0218 (4)0.0236 (4)0.0238 (4)0.0005 (3)0.0001 (3)0.0009 (3)
Cl10.0278 (4)0.0336 (4)0.0251 (4)0.0002 (3)0.0038 (3)0.0011 (3)
Cl20.0264 (4)0.0358 (4)0.0239 (3)0.0008 (3)0.0031 (3)0.0018 (3)
Geometric parameters (Å, º) top
C1—C21.394 (4)C10—F101.332 (3)
C1—C61.396 (4)C10—C111.368 (4)
C1—P11.820 (3)C11—F111.339 (3)
C2—F21.341 (3)C11—C121.375 (4)
C2—C31.373 (4)C12—F121.346 (3)
C3—F31.349 (3)C13—C181.387 (4)
C3—C41.373 (4)C13—C141.396 (4)
C4—F41.329 (3)C13—P11.821 (3)
C4—C51.381 (4)C14—F141.342 (3)
C5—F51.340 (3)C14—C151.368 (4)
C5—C61.372 (4)C15—F151.340 (3)
C6—F61.341 (3)C15—C161.381 (4)
C7—C81.390 (4)C16—F161.336 (3)
C7—C121.393 (4)C16—C171.374 (4)
C7—P11.819 (3)C17—F171.339 (3)
C8—F81.340 (3)C17—C181.383 (4)
C8—C91.379 (4)C18—F181.340 (3)
C9—F91.341 (3)P1—Cl22.1995 (10)
C9—C101.377 (4)P1—Cl12.2005 (10)
C2—C1—C6116.3 (3)C10—C11—C12120.0 (2)
C2—C1—P1122.5 (2)F12—C12—C11118.2 (2)
C6—C1—P1121.2 (2)F12—C12—C7120.1 (3)
F2—C2—C3117.6 (3)C11—C12—C7121.7 (3)
F2—C2—C1120.9 (2)C18—C13—C14117.1 (3)
C3—C2—C1121.4 (3)C18—C13—P1122.1 (2)
F3—C3—C2119.4 (3)C14—C13—P1120.8 (2)
F3—C3—C4119.7 (3)F14—C14—C15118.1 (2)
C2—C3—C4120.9 (3)F14—C14—C13120.3 (2)
F4—C4—C3120.6 (3)C15—C14—C13121.6 (3)
F4—C4—C5120.4 (3)F15—C15—C14120.0 (3)
C3—C4—C5119.1 (3)F15—C15—C16120.0 (3)
F5—C5—C6120.0 (3)C14—C15—C16120.0 (3)
F5—C5—C4120.2 (2)F16—C16—C17120.4 (3)
C6—C5—C4119.8 (3)F16—C16—C15119.9 (3)
F6—C6—C5117.1 (3)C17—C16—C15119.7 (3)
F6—C6—C1120.5 (2)F17—C17—C16119.8 (3)
C5—C6—C1122.4 (3)F17—C17—C18120.2 (3)
C8—C7—C12116.7 (3)C16—C17—C18119.9 (3)
C8—C7—P1120.8 (2)F18—C18—C17117.9 (2)
C12—C7—P1122.5 (2)F18—C18—C13120.6 (3)
F8—C8—C9117.5 (2)C17—C18—C13121.4 (3)
F8—C8—C7120.7 (3)C7—P1—C1118.64 (13)
C9—C8—C7121.8 (3)C7—P1—C13121.49 (13)
F9—C9—C10119.9 (3)C1—P1—C13119.86 (13)
F9—C9—C8120.6 (2)C7—P1—Cl290.26 (9)
C10—C9—C8119.6 (3)C1—P1—Cl290.37 (9)
F10—C10—C11120.6 (3)C13—P1—Cl289.51 (9)
F10—C10—C9119.5 (3)C7—P1—Cl190.12 (9)
C11—C10—C9119.9 (3)C1—P1—Cl190.01 (9)
F11—C11—C10120.2 (3)C13—P1—Cl189.74 (9)
F11—C11—C12119.8 (3)Cl2—P1—Cl1179.25 (5)
C6—C1—C2—F2178.8 (2)C18—C13—C14—F14179.1 (2)
P1—C1—C2—F22.9 (4)P1—C13—C14—F141.9 (4)
C6—C1—C2—C32.9 (4)C18—C13—C14—C151.9 (4)
P1—C1—C2—C3175.3 (2)P1—C13—C14—C15177.1 (2)
F2—C2—C3—F31.6 (4)F14—C14—C15—F152.9 (4)
C1—C2—C3—F3176.7 (2)C13—C14—C15—F15176.1 (3)
F2—C2—C3—C4177.1 (3)F14—C14—C15—C16177.2 (3)
C1—C2—C3—C44.6 (4)C13—C14—C15—C163.8 (4)
F3—C3—C4—F41.2 (4)F15—C15—C16—F162.2 (4)
C2—C3—C4—F4177.6 (2)C14—C15—C16—F16177.9 (3)
F3—C3—C4—C5179.4 (2)F15—C15—C16—C17177.6 (3)
C2—C3—C4—C51.9 (4)C14—C15—C16—C172.3 (4)
F4—C4—C5—F51.5 (4)F16—C16—C17—F171.5 (4)
C3—C4—C5—F5178.0 (3)C15—C16—C17—F17178.7 (3)
F4—C4—C5—C6178.3 (2)F16—C16—C17—C18178.8 (3)
C3—C4—C5—C62.3 (4)C15—C16—C17—C181.0 (4)
F5—C5—C6—F61.8 (4)F17—C17—C18—F182.5 (4)
C4—C5—C6—F6178.0 (2)C16—C17—C18—F18177.9 (3)
F5—C5—C6—C1176.3 (3)F17—C17—C18—C13176.8 (3)
C4—C5—C6—C13.9 (4)C16—C17—C18—C132.9 (4)
C2—C1—C6—F6179.3 (2)C14—C13—C18—F18179.3 (2)
P1—C1—C6—F62.4 (4)P1—C13—C18—F180.3 (4)
C2—C1—C6—C51.3 (4)C14—C13—C18—C171.4 (4)
P1—C1—C6—C5179.5 (2)P1—C13—C18—C17179.6 (2)
C12—C7—C8—F8178.9 (2)C8—C7—P1—C128.9 (3)
P1—C7—C8—F83.1 (4)C12—C7—P1—C1149.0 (2)
C12—C7—C8—C92.6 (4)C8—C7—P1—C13151.3 (2)
P1—C7—C8—C9175.4 (2)C12—C7—P1—C1330.9 (3)
F8—C8—C9—F93.2 (4)C8—C7—P1—Cl261.7 (2)
C7—C8—C9—F9175.4 (2)C12—C7—P1—Cl2120.5 (2)
F8—C8—C9—C10176.5 (2)C8—C7—P1—Cl1118.9 (2)
C7—C8—C9—C104.9 (4)C12—C7—P1—Cl158.9 (2)
F9—C9—C10—F101.3 (4)C2—C1—P1—C7150.5 (2)
C8—C9—C10—F10178.4 (2)C6—C1—P1—C731.3 (3)
F9—C9—C10—C11177.6 (3)C2—C1—P1—C1329.7 (3)
C8—C9—C10—C112.7 (4)C6—C1—P1—C13148.5 (2)
F10—C10—C11—F112.2 (4)C2—C1—P1—Cl260.0 (2)
C9—C10—C11—F11178.9 (2)C6—C1—P1—Cl2121.9 (2)
F10—C10—C11—C12177.1 (3)C2—C1—P1—Cl1119.4 (2)
C9—C10—C11—C121.7 (4)C6—C1—P1—Cl158.8 (2)
F11—C11—C12—F122.7 (4)C18—C13—P1—C727.6 (3)
C10—C11—C12—F12176.7 (3)C14—C13—P1—C7153.4 (2)
F11—C11—C12—C7176.5 (3)C18—C13—P1—C1152.5 (2)
C10—C11—C12—C74.1 (4)C14—C13—P1—C126.4 (3)
C8—C7—C12—F12178.9 (2)C18—C13—P1—Cl262.4 (2)
P1—C7—C12—F121.0 (4)C14—C13—P1—Cl2116.6 (2)
C8—C7—C12—C112.0 (4)C18—C13—P1—Cl1117.6 (2)
P1—C7—C12—C11179.9 (2)C14—C13—P1—Cl163.4 (2)
 

Acknowledgements

We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for a research studentship to RTAH, and also for support of the UMIST X-ray facility (Research Initiative Grant).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeveridge, A. D., Harris, G. S. & Inglis, F. (1966). J. Chem. Soc. A, pp. 520–528.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDillon, K. B., Lynch, R. J., Reeve, R. N. & Waddington, T. C. (1976). J. Chem. Soc. Dalton Trans. pp. 1243–1248.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGodfrey, S. M., McAuliffe, C. A., Mushtaq, I., Pritchard, R. G. & Sheffield, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3815–3818.  CSD CrossRef Google Scholar
First citationGodfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1996). Chem. Commun. pp. 2521–2522.  CSD CrossRef Google Scholar
First citationGodfrey, S. M., McAuliffe, C. A., Pritchard, R. G. & Sheffield, J. M. (1998). Chem. Commun. pp. 921–922.  CSD CrossRef Google Scholar
First citationGodfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823–4827.  CSD CrossRef Google Scholar
First citationHarris, G. S. & Ali, M. F. (1968). Tetrahedron Lett. 9, 37–38.  CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York, Academic Press.  Google Scholar
First citationRuthe, F., du Mont, W.-W. & Jones, P. G. (1997). Chem. Commun. pp. 1947–1948.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWiley, G. A. & Stine, W. R. (1967). Tetrahedron Lett. 8, 2321–2324.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds