metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­bis­(nitrato-κ2O,O′)(1,10-phenanthroline)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
*Correspondence e-mail: a.j.blake@nottingham.ac.uk

(Received 25 July 2006; accepted 14 August 2006; online 23 August 2006)

In the title compound, [Co(NO3)2(C2H3N)(C12H8N2)], the cobalt(II) centre adopts a seven-coordinate distorted penta­gonal–bipyramidal geometry, being coordinated by a bidentate 1,10-phenanthroline, two bidentate nitrate anions and an acetonitrile ligand. The two axial sites are occupied by the acetonitrile ligand and one N-atom donor from the phenanthroline. The major distortions from ideal geometry occur within the equatorial plane, and are due to the narrow bite angle of the bidentate nitrate anions.

Comment

The field of coordination frameworks and their potential applications have been increasingly growing over the last few decades (Braga et al., 2005[Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1-19.]; Champness et al., 2006[Champness, N. R. (2006). Dalton Trans. pp. 877-880.]). Our studies have led us to investigate a variety of transition metal(II) nitrate salts in combination with soft N-donor ligands (Barnett et al., 2001[Barnett, S. A., Blake, A. J., Champness, N. R., Nicolson, J. E. B. & Wilson, C. (2001). J. Chem. Soc. Dalton Trans. pp. 567-573.]; Barnett et al., 2003a[Barnett, S. A. & Champness, N. R. (2003a). Coord. Chem. Rev. 246, 145-168.],b[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2003b). Dalton Trans. pp. 2387-2394.]; Blake et al., 2000[Blake, A. J., Champness, N. R., Khlobystov, A. N., Parsons, S. & Schröder, M. (2000). Angew. Chem. Int. Ed. 39, 2317-2320.]; Khlobystov et al., 2003[Khlobystov, A. N., Brett, M. T., Blake, A. J., Champness, N. R., Gill, P. M. W., O'Neill, D. P., Teat, S. J., Wilson, C. & Schröder, M. (2003). J. Am. Chem. Soc. 125, 6753-6761.]). During our investigations, we have encountered the title compound, (I), as a by-product from an attempt to prepare a coordination polymer with the ligand 4,4′-(1,4-phenyl­ene)bis­(3,6-dipyridin-2-ylpyridazine). Thus, a new crystal structure containing the widely studied 1,10-phenanthroline ligand has been obtained and characterized.

[Scheme 1]

The cobalt(II) centre adopts a seven-coordinate distorted penta­gonal–bipyramidal geometry, the donor atoms being two N atoms supplied by a bidentate 1,10-phenanthroline, four O atoms from two bidentate nitrate anions and an N atom from an acetonitrile ligand. The two axial sites are occupied by the acetonitrile ligand and one N-atom donor from the phenanthroline; as the other phenanthroline N-atom donor occupies an equatorial site, this ligand bridges axial and equatorial sites. The major distortions from ideal geometry occur within the equatorial plane, and are due to the narrow bite angle (ca. 57°) of the nitrate anions.

A dihedral angle of 4.05 (14)° is observed between the least-squares planes through the two nitrate anions which occupy four of the five equatorial positions of the cobalt(II) coord­ination environment. Dihedral angles of 105.1 (12) and 108.7 (12)° are observed between the plane through the 1,10-phenanthroline group and those of the nitrates.

[Figure 1]
Figure 1
A view of the structure of the title compound, showing the atom-numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was prepared by slow reaction of Co(NO3)2·6H2O (10 mg, 0.034 mmol) and 1,10-phenanthroline (6 mg, 0.033 mmol) in acetonitrile (10 ml) in the presence of 4,4′-(1,4-phenyl­ene)bis­(3,6-dipyridin-2-ylpyridazine). Crystals were left to grow over a period of six months before being taken from the mother liquor for single-crystal X-ray diffraction studies.

Crystal data
  • [Co(NO3)2(C2H3N)(C12H8N2)]

  • Mr = 404.2

  • Monoclinic, P 21 /c

  • a = 7.1414 (9) Å

  • b = 14.3837 (17) Å

  • c = 15.4670 (19) Å

  • β = 92.906 (2)°

  • V = 1586.7 (3) Å3

  • Z = 4

  • Dx = 1.692 Mg m−3

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 150 (2) K

  • Block, orange

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SHELXTL; Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.575, Tmax = 0.614 (expected range = 0.840–0.896)

  • 9772 measured reflections

  • 3637 independent reflections

  • 2323 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.069

  • S = 0.88

  • 3637 reflections

  • 236 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0239P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co—N1 2.1087 (19)
Co—N2 2.1180 (19)
Co—N5 2.079 (2)
Co—O1 2.2375 (17)
Co—O3 2.2583 (18)
Co—O4 2.3289 (19)
Co—O5 2.1224 (17)
N1—Co—N2 78.48 (7)
N1—Co—N5 95.89 (7)
N1—Co—O3 137.22 (7)
N1—Co—O4 86.07 (7)
N1—Co—O5 141.12 (7)
N1—Co—O1 82.23 (7)
N2—Co—N5 172.54 (8)
N2—Co—O1 87.36 (7)
N2—Co—O3 87.34 (7)
N2—Co—O4 98.85 (7)
N2—Co—O5 92.63 (7)
N5—Co—O1 87.02 (7)
N5—Co—O3 93.68 (7)
N5—Co—O4 85.53 (7)
N5—Co—O5 94.82 (7)
O1—Co—O3 56.74 (6)
O1—Co—O4 165.41 (6)
O1—Co—O5 135.63 (6)
O3—Co—O4 136.29 (6)
O3—Co—O5 78.93 (6)
O4—Co—O5 57.68 (6)

The methyl H atoms on the acetonitrile mol­ecule were located in ΔF syntheses and refined as part of a rigid rotating group, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). Aryl H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2001[Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., van de Towler, M. & Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2006[Westrip, S. P. (2006). In preparation.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT and SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2006).

Acetonitrilebis(nitrato-κ2O,O')(1,10-phenanthroline)cobalt(II) top
Crystal data top
[Co(NO3)2(C2H3N)(C12H8N2)]F(000) = 820
Mr = 404.2Dx = 1.692 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2176 reflections
a = 7.1414 (9) Åθ = 2.6–26.3°
b = 14.3837 (17) ŵ = 1.13 mm1
c = 15.4670 (19) ÅT = 150 K
β = 92.906 (2)°Block, orange
V = 1586.7 (3) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3637 independent reflections
Radiation source: normal-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
h = 98
Tmin = 0.575, Tmax = 0.614k = 189
9772 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
3637 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.28718 (5)0.22598 (2)0.06541 (2)0.02146 (10)
O10.5768 (2)0.27548 (12)0.10332 (10)0.0303 (4)
O20.7271 (3)0.23194 (16)0.22143 (14)0.0651 (7)
O30.4572 (3)0.17059 (12)0.18127 (11)0.0357 (5)
O40.0056 (3)0.18769 (12)0.00861 (11)0.0324 (5)
O50.1019 (2)0.12420 (11)0.11177 (10)0.0295 (4)
O60.1564 (3)0.07419 (13)0.04586 (12)0.0429 (5)
N10.2889 (3)0.34430 (13)0.01504 (12)0.0202 (5)
N20.1867 (3)0.32986 (14)0.14833 (12)0.0220 (5)
N30.5916 (3)0.22588 (16)0.17027 (14)0.0326 (5)
N40.0217 (3)0.12728 (15)0.04871 (13)0.0290 (5)
N50.4106 (3)0.13693 (14)0.02096 (13)0.0260 (5)
C10.3322 (3)0.35013 (17)0.09734 (15)0.0237 (6)
H10.36350.29460.12670.028*
C20.3341 (3)0.43379 (17)0.14275 (15)0.0257 (6)
H20.36400.43470.20190.031*
C30.2925 (3)0.51460 (17)0.10130 (15)0.0245 (6)
H30.29340.57210.13150.029*
C40.2485 (3)0.51208 (16)0.01379 (15)0.0205 (5)
C50.2464 (3)0.42474 (16)0.02636 (14)0.0189 (5)
C60.2058 (3)0.59309 (17)0.03556 (16)0.0262 (6)
H60.20590.65250.00870.031*
C70.1654 (3)0.58598 (17)0.11965 (16)0.0273 (6)
H70.14130.64080.15150.033*
C80.1583 (3)0.49767 (18)0.16172 (15)0.0247 (6)
C90.1962 (3)0.41704 (17)0.11497 (14)0.0194 (5)
C100.1106 (3)0.48547 (19)0.24808 (16)0.0304 (7)
H100.08650.53790.28310.036*
C110.0991 (4)0.3977 (2)0.28134 (16)0.0322 (7)
H110.06570.38880.33940.039*
C120.1368 (3)0.32119 (18)0.22956 (15)0.0279 (6)
H120.12650.26060.25330.034*
C130.4936 (4)0.10035 (17)0.07133 (16)0.0268 (6)
C140.5977 (4)0.05468 (19)0.13782 (16)0.0413 (8)
H14A0.71290.02760.11150.062*
H14B0.62980.10030.18170.062*
H14C0.52040.00540.16500.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02299 (19)0.02063 (19)0.02087 (18)0.00052 (16)0.00219 (13)0.00219 (16)
O10.0333 (11)0.0272 (10)0.0301 (10)0.0034 (9)0.0005 (8)0.0113 (9)
O20.0500 (15)0.0784 (17)0.0632 (15)0.0177 (13)0.0356 (12)0.0239 (13)
O30.0335 (12)0.0356 (12)0.0380 (11)0.0096 (9)0.0032 (9)0.0136 (9)
O40.0351 (12)0.0331 (11)0.0294 (10)0.0024 (9)0.0050 (9)0.0107 (8)
O50.0281 (11)0.0337 (12)0.0262 (10)0.0050 (8)0.0019 (8)0.0061 (8)
O60.0332 (13)0.0471 (14)0.0480 (13)0.0188 (10)0.0035 (10)0.0050 (10)
N10.0212 (12)0.0221 (12)0.0174 (11)0.0014 (9)0.0011 (9)0.0009 (9)
N20.0217 (12)0.0256 (12)0.0186 (11)0.0005 (9)0.0016 (9)0.0002 (9)
N30.0290 (14)0.0320 (14)0.0361 (13)0.0020 (12)0.0027 (11)0.0060 (12)
N40.0280 (14)0.0299 (14)0.0292 (13)0.0025 (11)0.0039 (11)0.0020 (11)
N50.0272 (13)0.0230 (13)0.0279 (12)0.0019 (10)0.0010 (10)0.0018 (10)
C10.0251 (15)0.0237 (15)0.0224 (14)0.0019 (11)0.0029 (11)0.0042 (11)
C20.0279 (16)0.0305 (16)0.0189 (13)0.0010 (12)0.0025 (11)0.0033 (12)
C30.0244 (15)0.0226 (15)0.0262 (14)0.0021 (11)0.0024 (12)0.0055 (11)
C40.0172 (13)0.0192 (14)0.0247 (14)0.0016 (10)0.0036 (11)0.0001 (11)
C50.0171 (14)0.0220 (14)0.0173 (12)0.0020 (10)0.0020 (10)0.0026 (11)
C60.0243 (15)0.0188 (15)0.0353 (16)0.0017 (11)0.0008 (12)0.0007 (11)
C70.0253 (16)0.0226 (15)0.0336 (16)0.0023 (11)0.0020 (12)0.0096 (12)
C80.0182 (14)0.0329 (16)0.0227 (14)0.0043 (11)0.0025 (11)0.0079 (12)
C90.0138 (13)0.0238 (15)0.0205 (13)0.0001 (10)0.0007 (10)0.0001 (11)
C100.0245 (16)0.0394 (18)0.0269 (15)0.0072 (13)0.0014 (12)0.0098 (13)
C110.0268 (16)0.051 (2)0.0186 (14)0.0054 (13)0.0035 (12)0.0020 (13)
C120.0241 (16)0.0372 (17)0.0226 (14)0.0011 (12)0.0012 (12)0.0043 (12)
C130.0263 (16)0.0232 (15)0.0304 (15)0.0021 (12)0.0019 (13)0.0038 (12)
C140.044 (2)0.046 (2)0.0344 (17)0.0139 (15)0.0064 (14)0.0080 (14)
Geometric parameters (Å, º) top
Co—N12.1087 (19)C2—H20.9500
Co—N22.1180 (19)C3—C41.405 (3)
Co—N52.079 (2)C3—H30.9500
Co—O12.2375 (17)C4—C51.402 (3)
Co—O32.2583 (18)C4—C61.434 (3)
Co—O42.3289 (19)C5—C91.438 (3)
Co—O52.1224 (17)C6—C71.350 (3)
O1—N31.258 (2)C6—H60.9500
O2—N31.222 (3)C7—C81.429 (3)
O3—N31.264 (3)C7—H70.9500
O4—N41.264 (2)C8—C91.400 (3)
O5—N41.283 (2)C8—C101.406 (3)
O6—N41.227 (3)C10—C111.368 (3)
N1—C11.328 (3)C10—H100.9500
N1—C51.364 (3)C11—C121.395 (3)
N2—C121.329 (3)C11—H110.9500
N2—C91.359 (3)C12—H120.9500
N5—C131.132 (3)C13—C141.456 (3)
C1—C21.394 (3)C14—H14A0.9800
C1—H10.9500C14—H14B0.9800
C2—C31.367 (3)C14—H14C0.9800
N1—Co—N278.48 (7)C3—C2—C1119.3 (2)
N1—Co—N595.89 (7)C3—C2—H2120.3
N1—Co—O3137.22 (7)C1—C2—H2120.3
N1—Co—O486.07 (7)C2—C3—C4119.6 (2)
N1—Co—O5141.12 (7)C2—C3—H3120.2
N1—Co—O182.23 (7)C4—C3—H3120.2
N2—Co—N5172.54 (8)C5—C4—C3117.2 (2)
N2—Co—O187.36 (7)C5—C4—C6119.0 (2)
N2—Co—O387.34 (7)C3—C4—C6123.8 (2)
N2—Co—O498.85 (7)N1—C5—C4123.0 (2)
N2—Co—O592.63 (7)N1—C5—C9117.0 (2)
N5—Co—O187.02 (7)C4—C5—C9120.0 (2)
N5—Co—O393.68 (7)C7—C6—C4120.8 (2)
N5—Co—O485.53 (7)C7—C6—H6119.6
N5—Co—O594.82 (7)C4—C6—H6119.6
O1—Co—O356.74 (6)C6—C7—C8121.3 (2)
O1—Co—O4165.41 (6)C6—C7—H7119.3
O1—Co—O5135.63 (6)C8—C7—H7119.3
O3—Co—O4136.29 (6)C9—C8—C10116.7 (2)
O3—Co—O578.93 (6)C9—C8—C7119.3 (2)
O4—Co—O557.68 (6)C10—C8—C7124.0 (2)
N3—O1—Co94.19 (14)N2—C9—C8123.6 (2)
N3—O3—Co93.02 (14)N2—C9—C5116.9 (2)
N4—O4—Co88.74 (14)C8—C9—C5119.5 (2)
N4—O5—Co97.83 (13)C11—C10—C8119.6 (2)
C1—N1—C5117.7 (2)C11—C10—H10120.2
C1—N1—Co128.71 (16)C8—C10—H10120.2
C5—N1—Co113.54 (15)C10—C11—C12119.7 (2)
C12—N2—C9117.8 (2)C10—C11—H11120.2
C12—N2—Co128.42 (17)C12—C11—H11120.2
C9—N2—Co113.33 (15)N2—C12—C11122.5 (2)
O2—N3—O1121.6 (2)N2—C12—H12118.7
O2—N3—O3122.6 (2)C11—C12—H12118.7
O1—N3—O3115.8 (2)N5—C13—C14178.5 (3)
O6—N4—O4123.5 (2)C13—C14—H14A109.5
O6—N4—O5120.9 (2)C13—C14—H14B109.5
O4—N4—O5115.6 (2)H14A—C14—H14B109.5
C13—N5—Co169.2 (2)C13—C14—H14C109.5
N1—C1—C2123.1 (2)H14A—C14—H14C109.5
N1—C1—H1118.4H14B—C14—H14C109.5
C2—C1—H1118.4
 

Acknowledgements

We thank EPSRC (UK) for support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R., Nicolson, J. E. B. & Wilson, C. (2001). J. Chem. Soc. Dalton Trans. pp. 567–573.  Web of Science CSD CrossRef Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2003b). Dalton Trans. pp. 2387–2394.  CrossRef Google Scholar
First citationBarnett, S. A. & Champness, N. R. (2003a). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBlake, A. J., Champness, N. R., Khlobystov, A. N., Parsons, S. & Schröder, M. (2000). Angew. Chem. Int. Ed. 39, 2317–2320.  CrossRef CAS Google Scholar
First citationBraga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1–19.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS (Version 2.03), SAINT (Version 6.36a), SHELXTL (Version 6.12) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChampness, N. R. (2006). Dalton Trans. pp. 877–880.  Web of Science CrossRef Google Scholar
First citationKhlobystov, A. N., Brett, M. T., Blake, A. J., Champness, N. R., Gill, P. M. W., O'Neill, D. P., Teat, S. J., Wilson, C. & Schröder, M. (2003). J. Am. Chem. Soc. 125, 6753–6761.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., van de Towler, M. & Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2006). In preparation.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds