organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-4-nitro-N-(tri­fluoro­acet­yl)aniline: sheets built from iodo–nitro and nitro–nitro inter­actions

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 July 2006; accepted 26 July 2006; online 9 August 2006)

In the title compound, C8H4F3IN2O3, the mol­ecules are linked into sheets by a combination of a nearly symmetrical three-centre iodo–nitro inter­action and a dipolar nitro–nitro inter­action. Hydrogen bonds are absent from the structure.

Comment

We have recently reported the supra­molecular structures of a range of iodo­nitro­anilines, which exhibit a wide variety of inter­molecular inter­actions including hydrogen bonds, iodo–nitro inter­actions and aromatic ππ stacking inter­actions (Garden et al., 2001[Garden, S. J., Glidewell, C., Low, J. N., McWilliam, S. A., Pinto, A. C., Skakle, J. M. S., Torres, J. C. & Wardell, J. L. (2001). Acta Cryst. C57, 1212-1214.], 2002[Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701-709.], 2004[Garden, S. J., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, o328-o330.], 2005[Garden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o145-o147.]; McWilliam et al., 2001[McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942-945.]). Continuing this study, we now report the structure of 2-iodo-4-nitro-N-(trifluoro­acet­yl)aniline, (I)[link] (Fig. 1[link]).

[Scheme 1]

With the exception of the trifluoro­methyl group, the mol­ecule of (I)[link] is approximately planar, as shown by the key torsion angles (Table 1[link]); the bond distances and inter-bond angles show no unusual values.

The mol­ecules of (I)[link] are linked by a nearly symmetrical three-centre iodo–nitro inter­action. Atom I2 in the mol­ecule at (x, y, z) makes contacts with both nitro atoms O41 and O42 in the mol­ecule at (−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z), with geometric parameters I2⋯O41i = 3.3853 (16) Å, I2⋯O42i = 3.4159 (18) Å, C2—I2⋯O41i = 158.24 (6)°, C2—I2⋯O42i = 155.32 (6)° and O41i⋯I2⋯O42i = 37.06 (4)° [symmetry code: (i) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z]. Propagation of this inter­action then produces a C(6)C(6)[R21(4)] chain of rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]) running parallel to the [101] direction and generated by the n-glide plane at y = [{3 \over 4}] (Fig. 2[link]).

Two chains of this type, which are related to one another by inversion and which are thus anti-parallel, pass through each unit cell. The [101] chains are linked into sheets by a dipolar nitro–nitro inter­action. Nitro atom O41 in the mol­ecule at (x, y, z) makes a short dipolar contact with nitro atom N4 in the mol­ecule at ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), with geometric parameters O41⋯N4ii = 2.872 (2) Å and N4—O41⋯N4ii = 148.26 (14)° [symmetry code: (ii) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z]. Propagation of this inter­action, which resembles the type I (perpendicular) carbon­yl–carbonyl inter­action (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]), produces a C(2) chain running parallel to the [010] direction and generated by the 21 screw axis along ([{3 \over 4}], y, [{3 \over 4}]) (Fig. 3[link]).

The combination of [101] and [010] chains generates a sheet parallel to (10[\overline{1}]), but there are no direction-specific inter­actions between adjacent sheets; in particular, hydrogen bonds of all types and aromatic ππ stacking inter­actions are absent from the structure of (I)[link]. The absence of any participation by the amide group in any significant inter­molecular inter­actions is unexpected.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a chain of rings along the [101] direction. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) and ([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a chain along the [010] direction. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) and ([{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively.

Experimental

2-Iodo-4-nitro-N-(trifluoro­acet­yl)aniline was prepared according to a published method (Latham & Stanforth, 1997[Latham, E. J. & Stanforth, S. P. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2059-2063.]) and recrystallized from ethanol (m.p. 399–400 K).

Crystal data
  • C8H4F3IN2O3

  • Mr = 360.03

  • Monoclinic, P 21 /n

  • a = 14.6372 (3) Å

  • b = 5.0029 (2) Å

  • c = 15.2723 (3) Å

  • β = 110.318 (2)°

  • V = 1048.78 (5) Å3

  • Z = 4

  • Dx = 2.280 Mg m−3

  • Mo Kα radiation

  • μ = 3.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.425, Tmax = 0.536

  • 13862 measured reflections

  • 2402 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.050

  • S = 1.14

  • 2402 reflections

  • 154 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0133P)2 + 1.0182P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected torsion angles (°)

C2—C1—N1—C11 164.14 (19)
C1—N1—C11—C12 −178.11 (18)
C3—C4—N4—O41 4.7 (3)

All H atoms were located in difference maps and then treated as riding, with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C,N).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version, Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and macro PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and macro PRPKAPPA (Ferguson, 1999).

2-iodo-4-nitro-N-(trifluoroacetyl)aniline top
Crystal data top
C8H4F3IN2O3F(000) = 680
Mr = 360.03Dx = 2.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2402 reflections
a = 14.6372 (3) Åθ = 3.0–27.5°
b = 5.0029 (2) ŵ = 3.10 mm1
c = 15.2723 (3) ÅT = 120 K
β = 110.318 (2)°Block, yellow
V = 1048.78 (5) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2402 independent reflections
Radiation source: fine-focus sealed X-ray tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1918
Tmin = 0.425, Tmax = 0.536k = 66
13862 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0133P)2 + 1.0182P]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.83 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41248 (14)0.3324 (4)0.68419 (13)0.0136 (4)
C20.46717 (14)0.5180 (4)0.65374 (12)0.0132 (4)
C30.56627 (14)0.5485 (4)0.70208 (13)0.0157 (4)
C40.60949 (14)0.3870 (4)0.77944 (13)0.0158 (4)
C50.55859 (17)0.1934 (4)0.80803 (15)0.0187 (4)
C60.45995 (16)0.1672 (4)0.76057 (14)0.0177 (4)
N10.31119 (13)0.3194 (4)0.63785 (12)0.0148 (3)
C110.25016 (14)0.1210 (4)0.64240 (13)0.0152 (4)
O110.27013 (11)0.0869 (3)0.68607 (10)0.0210 (3)
C120.14369 (16)0.1693 (4)0.57965 (15)0.0180 (4)
F10.11944 (10)0.0034 (3)0.50804 (9)0.0278 (3)
F20.08382 (9)0.1259 (3)0.62684 (9)0.0274 (3)
F30.12630 (9)0.4152 (3)0.54381 (10)0.0269 (3)
I20.402878 (9)0.74612 (2)0.532577 (8)0.01443 (7)
N40.71340 (13)0.4257 (4)0.83326 (12)0.0199 (4)
O410.75675 (11)0.6106 (3)0.81166 (11)0.0288 (4)
O420.75250 (14)0.2737 (3)0.89876 (13)0.0293 (4)
H30.60350.67620.68280.019*
H50.59100.08050.85950.022*
H60.42390.03610.77980.021*
H10.28440.45590.60170.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (9)0.0122 (9)0.0130 (8)0.0006 (8)0.0050 (7)0.0015 (7)
C20.0163 (9)0.0122 (9)0.0107 (8)0.0016 (7)0.0044 (7)0.0002 (7)
C30.0160 (9)0.0176 (10)0.0142 (9)0.0014 (8)0.0061 (7)0.0014 (7)
C40.0138 (9)0.0166 (9)0.0149 (9)0.0008 (8)0.0026 (7)0.0036 (7)
C50.0222 (11)0.0175 (9)0.0147 (9)0.0031 (9)0.0044 (8)0.0019 (8)
C60.0215 (10)0.0151 (9)0.0154 (9)0.0022 (9)0.0048 (8)0.0012 (8)
N10.0136 (8)0.0131 (7)0.0175 (8)0.0009 (7)0.0053 (7)0.0023 (7)
C110.0158 (9)0.0151 (10)0.0172 (9)0.0015 (8)0.0087 (7)0.0026 (7)
O110.0215 (7)0.0149 (7)0.0269 (8)0.0020 (6)0.0091 (6)0.0038 (6)
C120.0173 (10)0.0172 (10)0.0199 (10)0.0037 (9)0.0070 (8)0.0003 (9)
F10.0294 (7)0.0271 (7)0.0224 (6)0.0056 (6)0.0034 (5)0.0084 (5)
F20.0174 (6)0.0378 (8)0.0303 (7)0.0064 (6)0.0126 (5)0.0008 (6)
F30.0183 (6)0.0202 (6)0.0376 (7)0.0003 (5)0.0039 (5)0.0059 (6)
I20.01406 (9)0.01624 (10)0.01339 (9)0.00049 (4)0.00527 (6)0.00346 (4)
N40.0169 (8)0.0241 (9)0.0156 (8)0.0002 (7)0.0017 (7)0.0032 (7)
O410.0199 (8)0.0331 (9)0.0274 (8)0.0092 (7)0.0006 (6)0.0005 (7)
O420.0215 (9)0.0359 (10)0.0232 (9)0.0055 (7)0.0017 (7)0.0069 (6)
Geometric parameters (Å, º) top
C1—C61.401 (3)C6—H60.95
C1—N11.405 (3)N1—C111.353 (3)
C1—C21.406 (3)N1—H10.88
C2—C31.389 (3)C11—O111.215 (2)
C2—I22.0982 (18)C11—C121.539 (3)
C3—C41.389 (3)C12—F21.332 (2)
C3—H30.95C12—F31.335 (3)
C4—C51.382 (3)C12—F11.341 (2)
C4—N41.469 (2)N4—O421.228 (2)
C5—C61.379 (3)N4—O411.230 (2)
C5—H50.95
C6—C1—N1121.56 (18)C1—C6—H6119.7
C6—C1—C2119.34 (18)C11—N1—C1127.44 (18)
N1—C1—C2119.09 (17)C11—N1—H1116.3
C3—C2—C1120.40 (17)C1—N1—H1116.3
C3—C2—I2118.36 (14)O11—C11—N1128.23 (19)
C1—C2—I2121.21 (14)O11—C11—C12118.34 (18)
C2—C3—C4118.13 (18)N1—C11—C12113.37 (17)
C2—C3—H3120.9F2—C12—F3107.75 (18)
C4—C3—H3120.9F2—C12—F1107.37 (17)
C5—C4—C3122.69 (19)F3—C12—F1107.51 (17)
C5—C4—N4118.85 (18)F2—C12—C11110.60 (17)
C3—C4—N4118.47 (18)F3—C12—C11114.07 (17)
C6—C5—C4118.80 (19)F1—C12—C11109.30 (17)
C6—C5—H5120.6O42—N4—O41123.11 (18)
C4—C5—H5120.6O42—N4—C4118.25 (18)
C5—C6—C1120.5 (2)O41—N4—C4118.64 (17)
C5—C6—H6119.7
C6—C1—C2—C33.8 (3)C2—C1—N1—C11164.14 (19)
N1—C1—C2—C3175.52 (18)C1—N1—C11—O111.1 (3)
C6—C1—C2—I2174.30 (15)C1—N1—C11—C12178.11 (18)
N1—C1—C2—I26.4 (2)O11—C11—C12—F250.4 (3)
C1—C2—C3—C41.4 (3)N1—C11—C12—F2132.29 (19)
I2—C2—C3—C4176.70 (14)O11—C11—C12—F3171.99 (18)
C2—C3—C4—C52.0 (3)N1—C11—C12—F310.7 (3)
C2—C3—C4—N4177.50 (17)O11—C11—C12—F167.6 (2)
C3—C4—C5—C63.0 (3)N1—C11—C12—F1109.71 (19)
N4—C4—C5—C6176.49 (18)C5—C4—N4—O424.1 (3)
C4—C5—C6—C10.6 (3)C3—C4—N4—O42176.38 (19)
N1—C1—C6—C5176.51 (19)C5—C4—N4—O41174.9 (2)
C2—C1—C6—C52.7 (3)C3—C4—N4—O414.7 (3)
C6—C1—N1—C1116.6 (3)
 

Acknowledgements

X-ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGarden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701–709.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Glidewell, C., Low, J. N., McWilliam, S. A., Pinto, A. C., Skakle, J. M. S., Torres, J. C. & Wardell, J. L. (2001). Acta Cryst. C57, 1212–1214.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o145–o147.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, o328–o330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLatham, E. J. & Stanforth, S. P. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2059–2063.  CrossRef Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds