organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-fluoro-1H-indole-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 8 August 2006; accepted 9 August 2006; online 23 August 2006)

The geometrical parameters for the title compound, C10H8FNO2, are normal. In the crystal structure, the mol­ecules form inversion-symmetry-generated dimeric pairs by way of two N—H⋯O hydrogen bonds.

Comment

Several indole­carboxylic acid derivatives show biological activity: methyl indole-3-carboxyl­ate, extracted from a marine microorganism (Hu et al., 2005[Hu, S.-C., Tan, R.-X., Hong, K., Yu, Z.-N. & Zhu, H.-L. (2005). Acta Cryst. E61, o1654-o1656.]), is cytotoxic against the K562 human leukaemia strain. Methyl indole-2-carboxylic acid may serve as a glycine site antagonist and hence aid in the treatment of human brain injuries (Morzyk-Ociepa et al., 2004[Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79-86.]). 5-Fluoro­indole-3-acetic acid (Antolic et al., 1996[Antolić, A., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. & Cohen, J. D. (1996). Acta Cryst. B52, 651-661.]) has plant-growth regulating activity. The crystal structure of methyl indole-2-carboxyl­ate has been deposited [Parsons, S., McNab, H. & Wood, P. (2004). refcode OCAQEP] with the Cambridge Structural Database (CSD; Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). As part of our ongoing research in this area, the structure of the related title compound, (I)[link] (Fig. 1[link]), prepared by the Fischer indole synthesis reaction (Narayana et al., 2005[Narayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638-4644.]), is now presented.

[Scheme 1]

The geometrical parameters for (I) are consistent with those of the compounds noted above. In particular, methyl indole-2-carboxylic acid, (II) (Morzyk-Ociepa et al., 2004[Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79-86.]), has almost identical geometry to (I). For example, the benzene-ring bond lengths (Å) in (I) are C1—C2 = 1.396 (2) [equivalent value in (II) = 1.390 (2) Å], C2—C3 = 1.375 (2) [1.372 (2)], C3—C4 = 1.399 (2) [1.404 (2)], C4—C5 = 1.356 (2) [1.357 (2)], C5—C6 = 1.408 (2) [1.409 (2)] and C6—C1 = 1.416 (2) [1.403 (2)]. Apart from the methyl H atoms, the mol­ecule in (I) is essentially planar [r.m.s. deviation of the non-H atoms from the mean plane = 0.031 Å, max. = 0.0327 (11) Å for N1]. The bond angle sum about N1 is 359.7°. The crystal packing in (I) exhibits inversion-symmetry-generated dimeric pairs of mol­ecules linked by two N—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). A similar pairing arrangement was seen in the structure of methyl indole-2-carboxyl­ate (CSD refcode OCAQEP) although the overall structure is different to (I). Conversely, in methyl indole-2-carboxylic acid (Morzyk-Ociepa et al., 2004[Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79-86.]) a completely different arrangement of N—H⋯O and O—H⋯O hydrogen bonds leads to chains of mol­ecules. There are no ππ stacking inter­actions in (I), the shortest inter­molecular ring-centroid separation being 4.35 Å.

[Figure 1]
Figure 1
View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2]
Figure 2
Unit cell packing in (I) with all H atoms except H1 omitted for clarity and hydrogen bonds indicated by dashed lines. See Table 1[link] for symmetry code.

Experimental

Methyl ­pyruvate-4-fluoro­phenyl­hydrazone (2 g, 0.0095 mol) was added to 10 g polyphospho­ric acid and continuously stirred for proper mixing. The reaction mass was slowly heated to 353–363 K and maintained for 4 h. The progress of the reaction was monitored by TLC. The reaction mass was cooled and water (100 ml) was added to break up the lumps until it became a slurry. The separated solid was filtered off and washed with water. The dried crude product was charcoalized in ethyl acetate, filtered over hyflo/silica gel, slowly cooled to room temperature and kept overnight with stirring. After recrystallization from ethyl acetate, colourless crystals of (I) were obtained in 60% yield (m.p. 474 K). Analysis found (calculated) for C10H8FNO2: C 62.11 (62.18), H 4.09 (4.17), N 7.13 (7.25)%.

Crystal data
  • C10H8FNO2

  • Mr = 193.17

  • Monoclinic, P 21 /n

  • a = 12.4420 (7) Å

  • b = 3.8185 (1) Å

  • c = 18.269 (1) Å

  • β = 100.125 (2)°

  • V = 854.43 (7) Å3

  • Z = 4

  • Dx = 1.502 Mg m−3

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.41 × 0.07 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.994

  • 10458 measured reflections

  • 1937 independent reflections

  • 1311 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.03

  • 1937 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0568P)2 + 0.104P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.014 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.883 (18) 2.019 (18) 2.8555 (18) 157.7 (15)
Symmetry code: (i) -x+1, -y, -z.

The N-bound H atom was located in a difference map and its position was freely refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in idealized locations (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was rotated about its C—N bond to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Methyl 5-fluoro-1H-indole-2-carboxylate top
Crystal data top
C10H8FNO2F(000) = 400
Mr = 193.17Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2189 reflections
a = 12.4420 (7) Åθ = 1.0–27.5°
b = 3.8185 (1) ŵ = 0.12 mm1
c = 18.269 (1) ÅT = 120 K
β = 100.125 (2)°Needle, colourless
V = 854.43 (7) Å30.41 × 0.07 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1937 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 27.6°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.952, Tmax = 0.994k = 44
10458 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.104P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1937 reflectionsΔρmax = 0.23 e Å3
132 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Special details top

Experimental. 1H NMR (CDCl3, 300?MHz): δ 3.92 (s, 3H, –CH3), 7.01 (dt, 1H, Ar—H), 7.10 (s, 1H, Ar—H), 7.25 (dd, J =2.4 and 9.3 Hz, 1H, Ar—H), 7.44 (dd, J = 4.2 and 8.7 Hz, 1H, Ar—H), 11.38 (br s, 1H, –NH–, exchangeable with D2O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48721 (12)0.2695 (4)0.17446 (9)0.0207 (4)
C20.39008 (13)0.1753 (4)0.19763 (9)0.0241 (4)
H20.33300.06100.16490.029*
C30.38010 (13)0.2540 (4)0.26959 (9)0.0255 (4)
H30.31560.19220.28770.031*
C40.46546 (14)0.4259 (4)0.31588 (9)0.0252 (4)
C50.56073 (13)0.5227 (4)0.29536 (9)0.0232 (4)
H50.61650.63910.32880.028*
C60.57298 (13)0.4421 (4)0.22209 (9)0.0204 (4)
C70.65781 (12)0.4953 (4)0.18042 (9)0.0210 (4)
H70.72590.60680.19720.025*
C80.62237 (12)0.3543 (4)0.11111 (9)0.0200 (4)
C90.67713 (12)0.3284 (4)0.04739 (9)0.0216 (4)
C100.83499 (14)0.4799 (5)0.00077 (10)0.0318 (4)
H10A0.90510.59990.01420.048*
H10B0.79290.59790.04420.048*
H10C0.84810.23600.01340.048*
N10.51896 (10)0.2191 (3)0.10736 (8)0.0213 (3)
H10.4827 (14)0.101 (4)0.0694 (10)0.026*
O10.77453 (9)0.4888 (3)0.05982 (6)0.0247 (3)
O20.64084 (9)0.1788 (3)0.01054 (6)0.0286 (3)
F10.44961 (8)0.5000 (3)0.38680 (5)0.0356 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (8)0.0185 (8)0.0214 (9)0.0024 (6)0.0017 (7)0.0013 (6)
C20.0209 (8)0.0225 (9)0.0277 (10)0.0002 (7)0.0013 (7)0.0015 (7)
C30.0231 (9)0.0231 (9)0.0313 (10)0.0032 (7)0.0076 (7)0.0044 (7)
C40.0299 (9)0.0267 (9)0.0199 (9)0.0059 (7)0.0071 (7)0.0002 (7)
C50.0240 (9)0.0229 (9)0.0216 (9)0.0012 (6)0.0007 (7)0.0004 (7)
C60.0212 (8)0.0168 (8)0.0229 (9)0.0027 (6)0.0030 (6)0.0023 (6)
C70.0200 (8)0.0189 (8)0.0230 (9)0.0008 (6)0.0002 (7)0.0007 (7)
C80.0207 (8)0.0176 (8)0.0210 (9)0.0025 (6)0.0015 (6)0.0031 (6)
C90.0223 (8)0.0196 (8)0.0216 (9)0.0029 (7)0.0001 (7)0.0037 (7)
C100.0327 (10)0.0346 (10)0.0310 (11)0.0048 (8)0.0137 (8)0.0018 (8)
N10.0191 (7)0.0225 (7)0.0208 (8)0.0001 (5)0.0004 (5)0.0027 (6)
O10.0231 (6)0.0287 (7)0.0231 (7)0.0044 (5)0.0064 (5)0.0024 (5)
O20.0289 (7)0.0352 (7)0.0210 (7)0.0044 (5)0.0022 (5)0.0051 (5)
F10.0394 (6)0.0447 (7)0.0254 (6)0.0011 (5)0.0127 (5)0.0044 (5)
Geometric parameters (Å, º) top
C1—N11.366 (2)C7—C81.375 (2)
C1—C21.396 (2)C7—H70.9500
C1—C61.416 (2)C8—N11.377 (2)
C2—C31.375 (2)C8—C91.452 (2)
C2—H20.9500C9—O21.2173 (18)
C3—C41.399 (2)C9—O11.3412 (19)
C3—H30.9500C10—O11.444 (2)
C4—C51.356 (2)C10—H10A0.9800
C4—F11.3739 (19)C10—H10B0.9800
C5—C61.408 (2)C10—H10C0.9800
C5—H50.9500N1—H10.883 (18)
C6—C71.420 (2)
N1—C1—C2129.66 (14)C8—C7—H7126.6
N1—C1—C6108.14 (14)C6—C7—H7126.6
C2—C1—C6122.19 (15)C7—C8—N1109.76 (14)
C3—C2—C1117.52 (15)C7—C8—C9130.19 (15)
C3—C2—H2121.2N1—C8—C9120.04 (14)
C1—C2—H2121.2O2—C9—O1123.19 (15)
C2—C3—C4119.59 (15)O2—C9—C8125.07 (15)
C2—C3—H3120.2O1—C9—C8111.74 (13)
C4—C3—H3120.2O1—C10—H10A109.5
C5—C4—F1118.81 (14)O1—C10—H10B109.5
C5—C4—C3124.63 (16)H10A—C10—H10B109.5
F1—C4—C3116.56 (14)O1—C10—H10C109.5
C4—C5—C6116.71 (15)H10A—C10—H10C109.5
C4—C5—H5121.6H10B—C10—H10C109.5
C6—C5—H5121.6C1—N1—C8108.52 (13)
C5—C6—C1119.36 (15)C1—N1—H1126.1 (11)
C5—C6—C7133.90 (15)C8—N1—H1125.1 (11)
C1—C6—C7106.74 (14)C9—O1—C10115.88 (12)
C8—C7—C6106.83 (14)
N1—C1—C2—C3178.99 (15)C1—C6—C7—C80.57 (16)
C6—C1—C2—C30.5 (2)C6—C7—C8—N10.64 (17)
C1—C2—C3—C40.7 (2)C6—C7—C8—C9178.29 (15)
C2—C3—C4—C50.5 (3)C7—C8—C9—O2175.35 (15)
C2—C3—C4—F1179.30 (13)N1—C8—C9—O23.5 (2)
F1—C4—C5—C6179.78 (12)C7—C8—C9—O14.2 (2)
C3—C4—C5—C60.0 (2)N1—C8—C9—O1176.93 (12)
C4—C5—C6—C10.2 (2)C2—C1—N1—C8179.43 (15)
C4—C5—C6—C7179.57 (16)C6—C1—N1—C80.09 (17)
N1—C1—C6—C5179.56 (13)C7—C8—N1—C10.46 (17)
C2—C1—C6—C50.0 (2)C9—C8—N1—C1178.59 (13)
N1—C1—C6—C70.30 (16)O2—C9—O1—C101.0 (2)
C2—C1—C6—C7179.86 (14)C8—C9—O1—C10179.46 (13)
C5—C6—C7—C8179.26 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.883 (18)2.019 (18)2.8555 (18)157.7 (15)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for data collection. ABV thanks Mangalore University for provision of research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAntolić, A., Kojić-Prodić, B., Tomić, S., Nigović, B., Magnus, V. & Cohen, J. D. (1996). Acta Cryst. B52, 651–661.  CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, S.-C., Tan, R.-X., Hong, K., Yu, Z.-N. & Zhu, H.-L. (2005). Acta Cryst. E61, o1654–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 79–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationNarayana, B., Ashalatha, B. V., Vijaya Raj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638–4644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds