organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrazine-2-carbohydrazide: a three-dimensional hydrogen-bonded framework structure

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250, Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 27 July 2006; accepted 28 July 2006; online 9 August 2006)

Mol­ecules of the title compound, C5H6N4O, are linked into a three-dimensional framework structure by a combination of N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds.

Comment

As part of our general study of the supra­molecular structures of amine and hydrazine derivatives, we report here the mol­ecular and supra­molecular structure of the title compound, (I)[link]. Within the hydrazino fragment, the coordination at C7 and N2 is planar within experimental uncertainty, while the coordination at N3 is markedly pyramidal (Fig. 1[link]). Apart from the H atoms bonded to atom N3, the mol­ecule is effectively planar, as shown by the key torsion angles (Table 1[link]); the bond distances and angles show no unexpected features.

[Scheme 1]

The mol­ecules are linked by hydrogen bonds (Table 2[link]) into a three-dimensional framework of some complexity, whose formation can, nonetheless, be readily analysed in terms of two simple substructures. In the first of these substructures, atom N3 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via H31 and H32, respectively, to atoms O1 in the mol­ecules at (1 − x, 1 − y, 1 − z) and (−x, 1 − y, 1 − z), so generating by inversion a chain of edge-fused R22(10) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings running along (x, [{1\over 2}], [{1\over 2}]) (Fig. 2[link]). The rings containing H31 are centred at (n + [{1\over 2}], [{1\over 2}], [{1\over 2}]), where n = zero or an integer) and those containing H32 are centred at (n, [{1\over 2}], [{1\over 2}]) (n = zero or integer).

In the second substructure, atom N2 in the mol­ecule at (x, y, z), which lies in the chain of rings along (x, [{1\over 2}], [{1\over 2}]), acts as hydrogen-bond donor to atom N4 in the mol­ecule at (1 − x, [{1\over 2}] − y, [{1\over 2}] + z), which lies in the chain along (x, 0, 1); at the same time, atom C3 at (1 − x, [{1\over 2}] − y, [{1\over 2}] + z) acts as donor to atom N1 in the mol­ecule at (x, y, z), so forming an R22(8) motif (Fig. 3[link]). Propagation of this motif by the symmetry operations of the space group then links the chain of rings along (x, [{1\over 2}], [{1\over 2}]) directly to the four chains along (x, 0, 0), (x, 0, 1), (x, 1, 0) and (x, 1, 1), thence linking all of the [100] chains into a single three-dimensional framework structure (Fig. 4[link]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a chain of edge-fused rings along (x, [{1\over 2}], [{1\over 2}]). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the concerted action of the N—H⋯N and C—H⋯N hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, [{1\over 2}] − y, [{1\over 2}] + z) and (−1 + x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 4]
Figure 4
A projection down [100] of part of the crystal structure of compound (I)[link], showing the linking of the chain of rings along (x, [{1\over 2}], [{1\over 2}]) to four adjacent chains. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

A solution of methyl pyrazine­carboxyl­ate and a fivefold molar excess of hydrazine hydrate was held at 353 K for 12 h. The solvent was removed under reduced pressure and the residue was purified by washing successively with cold ethanol and with diethyl ether to give crystalline (I)[link] (yield 87%, m.p. 431–432 K). NMR (DMSO-d6): δ(H) 10.14 (1H, s, NH), 9.13 (1H, d, J = 1.2 Hz, H3), 8.84 (1H, d, J = 2.8 Hz, H6), 8.70 (1H, dd, J = 1.2 and 2.8 Hz, H5), 4.70 (2H, s, NH2); δ(C) 161.4, 147.2, 144.8, 143.4, 143.1. IR (KBr disk, cm−1) 3306–3238 (NH), 1648 (CO).

Crystal data
  • C5H6N4O

  • Mr = 138.14

  • Monoclinic, P 21 /c

  • a = 3.7193 (5) Å

  • b = 16.978 (2) Å

  • c = 9.7858 (10) Å

  • β = 99.185 (8)°

  • V = 610.01 (13) Å3

  • Z = 4

  • Dx = 1.504 Mg m−3

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.50 × 0.18 × 0.01 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.999

  • 6568 measured reflections

  • 1395 independent reflections

  • 1080 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.138

  • S = 1.08

  • 1395 reflections

  • 91 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4947P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected torsion angles (°)

N1—C2—C7—N2 −1.9 (3)
C2—C7—N2—N3 179.60 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4i 0.96 2.06 2.976 (3) 160
N3—H31⋯O1ii 0.92 2.31 3.079 (3) 140
N3—H32⋯O1iii 0.92 2.25 3.138 (2) 161
C3—H3⋯N1iv 0.95 2.59 3.312 (3) 133
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

All H atoms were located in difference maps, and then treated as riding atoms, with C—H = 0.95 Å and N—H = 0.92 (NH2) or 0.96 Å (NH), with Uiso(H) = 1.2Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Pyrazine-2-carbohydrazide top
Crystal data top
C5H6N4OF(000) = 288
Mr = 138.14Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1395 reflections
a = 3.7193 (5) Åθ = 4.2–27.5°
b = 16.978 (2) ŵ = 0.11 mm1
c = 9.7858 (10) ÅT = 120 K
β = 99.185 (8)°Plate, colourless
V = 610.01 (13) Å30.50 × 0.18 × 0.01 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1395 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.2°
φ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2219
Tmin = 0.965, Tmax = 0.999l = 1212
6568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4947P]
where P = (Fo2 + 2Fc2)/3
1395 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2754 (5)0.23490 (10)0.66747 (17)0.0223 (4)
C20.1216 (6)0.27960 (12)0.5616 (2)0.0199 (5)
C30.1032 (6)0.24786 (13)0.4486 (2)0.0218 (5)
N40.1773 (5)0.17092 (11)0.43778 (19)0.0255 (4)
C50.0225 (6)0.12634 (13)0.5431 (2)0.0269 (5)
C60.1998 (6)0.15799 (13)0.6573 (2)0.0255 (5)
C70.1993 (6)0.36628 (12)0.5634 (2)0.0214 (5)
O10.0679 (4)0.40779 (9)0.46448 (15)0.0273 (4)
N20.4142 (5)0.39368 (10)0.67541 (18)0.0237 (4)
N30.5100 (6)0.47441 (11)0.6892 (2)0.0305 (5)
H20.51800.36120.75200.028*
H30.20860.28200.37630.026*
H50.06590.07120.54000.032*
H60.30140.12390.73040.031*
H310.67220.48550.63000.037*
H320.30480.50340.65710.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0249 (10)0.0235 (10)0.0180 (8)0.0030 (7)0.0020 (7)0.0022 (7)
C20.0195 (10)0.0232 (11)0.0173 (10)0.0034 (8)0.0036 (8)0.0002 (8)
C30.0207 (10)0.0253 (11)0.0189 (10)0.0014 (9)0.0018 (8)0.0008 (8)
N40.0252 (10)0.0275 (11)0.0238 (9)0.0001 (8)0.0038 (8)0.0027 (7)
C50.0317 (13)0.0203 (11)0.0291 (12)0.0021 (9)0.0067 (10)0.0001 (9)
C60.0284 (12)0.0242 (11)0.0239 (11)0.0042 (9)0.0046 (9)0.0031 (9)
C70.0211 (11)0.0231 (11)0.0200 (10)0.0020 (9)0.0028 (8)0.0008 (8)
O10.0316 (9)0.0237 (8)0.0236 (8)0.0014 (7)0.0048 (6)0.0042 (6)
N20.0279 (10)0.0201 (10)0.0213 (9)0.0011 (7)0.0017 (7)0.0006 (7)
N30.0340 (11)0.0210 (10)0.0333 (11)0.0015 (8)0.0039 (8)0.0001 (8)
Geometric parameters (Å, º) top
N1—C61.336 (3)N3—H310.92
N1—C21.337 (3)N3—H320.92
C2—C31.385 (3)C3—N41.336 (3)
C2—C71.499 (3)C3—H30.95
C7—O11.234 (2)N4—C51.333 (3)
C7—N21.333 (3)C5—C61.388 (3)
N2—N31.417 (3)C5—H50.95
N2—H20.96C6—H60.95
C6—N1—C2115.99 (18)H31—N3—H32105.5
N1—C2—C3121.8 (2)N4—C3—C2122.32 (19)
N1—C2—C7119.37 (18)N4—C3—H3118.8
C3—C2—C7118.81 (18)C2—C3—H3118.8
O1—C7—N2123.8 (2)C5—N4—C3115.82 (19)
O1—C7—C2120.01 (18)N4—C5—C6122.1 (2)
N2—C7—C2116.19 (17)N4—C5—H5119.0
C7—N2—N3121.63 (18)C6—C5—H5119.0
C7—N2—H2123.7N1—C6—C5122.0 (2)
N3—N2—H2114.6N1—C6—H6119.0
N2—N3—H31108.5C5—C6—H6119.0
N2—N3—H32107.6
C6—N1—C2—C30.2 (3)C2—C7—N2—N3179.60 (18)
C6—N1—C2—C7178.60 (18)N1—C2—C3—N40.7 (3)
N1—C2—C7—O1177.82 (19)C7—C2—C3—N4178.14 (19)
C3—C2—C7—O11.0 (3)C2—C3—N4—C50.4 (3)
N1—C2—C7—N21.9 (3)C3—N4—C5—C60.4 (3)
C3—C2—C7—N2179.31 (18)C2—N1—C6—C50.5 (3)
O1—C7—N2—N30.1 (3)N4—C5—C6—N10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4i0.962.062.976 (3)160
N3—H31···O1ii0.922.313.079 (3)140
N3—H32···O1iii0.922.253.138 (2)161
C3—H3···N1iv0.952.593.312 (3)133
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x1, y+1/2, z1/2.
 

Acknowledgements

X-Ray data were collected at the EPSRC National X-ray Crystallography Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds