organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-De­­oxy-α-D-sorbo­pyran­ose

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: nigel.jones@chem.ox.ac.uk

(Received 25 August 2006; accepted 19 September 2006; online 27 September 2006)

The crystalline form of 1-de­oxy-D-sorbose, C6H12O5, is shown to be 1-de­oxy-α-D-sorbopyran­ose. This is the first reported crystal structure of a 1-deoxy­ketose. The absolute configuration was determined by the use of D-xylose as the starting material. The crystal structure has a three-dimensional hydrogen-bonded network.

Comment

Although the driving force for the large-scale production of rare sugars by biotechnological (Izumori, 2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.]; Granström et al., 2004[Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]) and chemical (Beadle et al., 1992[Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5078796.]) methods is driven by the demand for alternative foodstuffs (Skytte, 2002[Postema, M. H. D., Calimente, D., Liu, L. & Behrmann, T. L. (2000). J. Org. Chem. 65, 6061-6068.]), rare monosaccharides such as D-psicose (Takata et al., 2005[Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Int. J. Oncol. 27, 907-912.]; Matsuo et al., 2006[Jones, N. A., Fanefjord, M., Jenkinson, S. F., Sawyer, N. K., Horne, G., Hakansson, A. E., Watkin, D. J. & Fleet, G. W. J. In preparation.]) and D-allose (Sui et al., 2005[Skytte, U. P. (2002). Cereal Foods World, 47, 224-???.]; Hossain et al., 2006[Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369-371.]) have significant chemotherapeutic properties. As well as being useful for their potential biological properties, the 1-deoxy­ketoses are likely to provide a new set of building blocks for the synthesis of a wide variety of complex biomolecules. However, the properties of 1-deoxy­ketoses have been little studied to date; there are no reports of the crystal structure of any of the four diastereomers. As part of our work to extend the range of simple monosaccharide derivatives, 1-de­oxy-D-sorbose, (4), was synthesized. Although the compound has been prepared previously (James & Angyal, 1972[James, K. & Angyal, S. J. (1972). Aust. J. Chem. 25, 1967-1977.]; Dills & Meyer, 1976[Dills, W. L. & Meyer, W. L. (1976). Biochemistry, 15, 4506-4512.]), a solution of the compound contains a mixture of equilibrating structures (Angyal et al., 1976[Angyal, S. J., Bethell, G. S., Cowley, D. E. & Pickles, V. A. (1976). Aust. J. Chem. 29, 1239-1247.]). 1-De­oxy-D-sorbose was readily crystallized and this paper firmly establishes that it exists in the crystalline state as the α-anomer of the pyran­ose ring form, (5), in a chair conformation.

[Scheme 1]

In summary, 1-de­oxy-D-sorbose, (4), exists in the crystalline state as 1-de­oxy-α-D-sorbopyran­ose, (5). The absolute configuration was determined by the use of D-xylose as the starting material. A D-sugar is defined by the absolute stereochemistry at C-5 (relative to D-glyceraldehyde); see http://www.chem.qmw.ac.uk/iupac/2carb/ for an explanation of carbohydrate nomenclature (IUPAC–IUBMB, 1996[IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (1996). Nomenclature of Carbohydrates (Recommendations 1996). http://www.chem.qmw.ac.uk/iupac/2carb/ ]). The present X-ray crystal structure determined the stereochemistry at the anomeric position (C1) as being α, with the hydroxyl group in the axial position.

The crystal structure of (5) has a three-dimensional hydrogen-bonded network, with each mol­ecule inter­acting with six neighbours (Fig. 2[link]). The hydrogen bonds themselves form a discrete continuous chain: O10⋯O7, O7⋯O9, O9⋯O8 and O8⋯O6, with O10 at the head of the chain as a donor and O6 at the tail as an acceptor (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2]
Figure 2
The crystal structure of (5), projected along the b axis, showing the three-dimensional hydrogen-bonding network (dotted lines). The hydrogen-bond chain involving atoms O6, O7, O8, O9 and O10 is highlighted in orange.
[Figure 3]
Figure 3
A projection of the crystal structure along the c axis, showing the five mol­ecules linked by the discrete hydrogen-bond chain, in which the H⋯O hydrogen bonds are shown in orange.

Experimental

For the synthesis of 1-de­oxy-D-sorbose, the tribenzyl­ated derivative of D-xylose, (1) (Barker & Fletcher, 1961[Barker, R. & Fletcher, H. G. (1961). J. Org. Chem. 26, 4605-4609.]; Postema et al., 2000[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), was oxidized to the lactone, (2), with acetic anhydride and dimethyl sulfoxide (Calzada et al., 1995[Calzada, E., Clarke, C. A., Roussin-Bouchard, C. & Wightman, R. H. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 517-518.]). Addition of methyl lithium to the protected lactone, (2), afforded the lactol, (3). Subsequent hydrogenation yielded 1-de­oxy-D-sorbose, (4) (Jones et al., in preparation[Jones, N. A., Fanefjord, M., Jenkinson, S. F., Sawyer, N. K., Horne, G., Hakansson, A. E., Watkin, D. J. & Fleet, G. W. J. In preparation.]). The title compound, (5), was recrystallized from a mixture of ethyl acetate and methanol (3:1) to give colourless crystals (m.p. 425–427 K). [α]D20 50.2 (c 1.0 in H2O).

Crystal data
  • C6H12O5

  • Mr = 164.16

  • Orthorhombic, P 21 21 21

  • a = 6.3661 (3) Å

  • b = 6.6684 (3) Å

  • c = 17.1873 (9) Å

  • V = 729.63 (6) Å3

  • Z = 4

  • Dx = 1.494 Mg m−3

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 190 K

  • Needle, colourless

  • 0.60 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]) Tmin = 0.88, Tmax = 0.97

  • 1613 measured reflections

  • 981 independent reflections

  • 894 reflections with I > 2σ(I)

  • Rint = 0.012

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.01

  • 981 reflections

  • 100 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.02P)2 + 0.17P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H5⋯O7i 0.84 1.95 2.750 (2) 158
O7—H9⋯O9ii 0.85 2.05 2.852 (2) 158
O9—H12⋯O8iii 0.84 1.86 2.694 (2) 174
O8—H10⋯O6iv 0.84 1.95 2.780 (2) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the known starting materials. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–0.98 Å and O—H = 0.82 Å and Uiso(H) in the range 1.2–1.5Ueq(C,O)], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Matsuo, T., Shirai, Y. & Izumori, K. (2006). FASEB J. 20, A594.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511-516.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Although the driving force for the large-scale production of rare sugars by biotechnological (Izumori, 2002; Granström et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002), rare monosaccharides such as D-psicose (Takata et al., 2005; Matsuo et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties. As well as being useful for their potential biological properties, the 1-deoxyketoses are likely to provide a new set of building blocks for the synthesis of a wide variety of complex biomolecules. However, the properties of 1-deoxyketoses have been little studied to date; there are no reports of the crystal structure of any of the four diastereomers. As part of our work to extend the range of simple monosaccharide derivatives, 1-deoxy-D-sorbose, (4), was synthesized. Although the compound has been prepared previously (James & Angyal, 1972; Dills & Meyer, 1976), a solution of the compound contains a mixture of equilibrating structures (Angyal et al., 1976). 1-Deoxy-D-sorbose was readily crystallized and this paper firmly establishes that it exists in the crystalline state as the α-anomer of the pyranose ring form, (5), in a chair conformation.

In summary, 1-deoxy-D-sorbose, (4), exists in the crystalline state as 1-deoxy-α-D-sorbopyranose, (5). The absolute configuration was determined by the use of D-xylose as the starting material. A D-sugar is defined by the absolute stereochemistry at C-5 (related to D-glyceraldehyde); see http://www.chem.qmw.ac.uk/iupac/2carb/ for an explanation of carbohydrate nomenclature (IUPAC–IUBMB, 1996). The present X-ray crystal structure determined the stereochemistry at the anomeric position (C1) as being α, with the hydroxyl group in the axial position.

The crystal structure of (5) has a three-dimensional hydrogen-bonded network, with each molecule interacting with six neighbours (Fig. 2). The hydrogen bonds themselves form a discrete continuous chain: O10···O7, O7···O9, O9···O8 and O8···O6, with O10 at the head of the chain as a donor and O6 at the tail as an acceptor (Fig. 3).

Experimental top

For the synthesis of 1-deoxy-D-sorbose, the tribenzylated derivative of D-xylose, (1) (Barker & Fletcher, 1961; Postema et al., 2000), was oxidized to the lactone, (2), with acetic anhydride and dimethyl sulfoxide (Calzada et al., 1995). Addition of methyl lithium to the protected lactone, (2), afforded the lactol, (3). Subsequent hydrogenation yielded 1-deoxy-D-sorbose, (4) (Jones et al., in preparation). The title compound, (5), was recrystallized from a mixture of ethyl acetate and methanol (Ratio?) to give colourless crystals (m.p. 425–427 K). [α]D20 50.2 (c 1.0 in H2O).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the known starting materials. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H in the range 0.93–0.98 Å and O—H = 0.82 Å and Uiso(H) in the range 1.2–1.5Ueq(C,O)], after which their positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level and H atoms are shown as spheres of arbitary radii.
[Figure 2] Fig. 2. The crystal structure of (5), projected along the b axis, showing the three-dimensional hydrogen-bonding network (dotted lines). The hydrogen-bond chain involving atoms O6, O7, O8, O9 and O10 is highlighted in orange.
[Figure 3] Fig. 3. A projection of the crystal structure along the c axis, showing the five molecules linked by the discrete hydrogen-bond chain, in which the H···O hydrogen bonds are shown in orange.
1-Deoxy-α-D-sorbopyranose top
Crystal data top
C6H12O5Dx = 1.494 Mg m3
Mr = 164.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 926 reflections
a = 6.3661 (3) Åθ = 5–27°
b = 6.6684 (3) ŵ = 0.13 mm1
c = 17.1873 (9) ÅT = 190 K
V = 729.63 (6) Å3Plate, colourless
Z = 40.60 × 0.20 × 0.20 mm
F(000) = 352
Data collection top
Nonius KappaCCD area-detector
diffractometer
894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.5°, θmin = 5.7°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.88, Tmax = 0.97k = 88
1613 measured reflectionsl = 2222
981 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(F2) + (0.02P)2 + 0.17P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.01(Δ/σ)max = 0.000444
981 reflectionsΔρmax = 0.17 e Å3
100 parametersΔρmin = 0.17 e Å3
0 restraints
Crystal data top
C6H12O5V = 729.63 (6) Å3
Mr = 164.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3661 (3) ŵ = 0.13 mm1
b = 6.6684 (3) ÅT = 190 K
c = 17.1873 (9) Å0.60 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
981 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
894 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.97Rint = 0.012
1613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
981 reflectionsΔρmin = 0.17 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8793 (3)0.1019 (2)0.61632 (9)0.0222
C20.6834 (2)0.1446 (2)0.66525 (8)0.0199
C30.5498 (2)0.3081 (2)0.62834 (8)0.0201
C40.6796 (2)0.4956 (2)0.61343 (8)0.0220
C50.8770 (3)0.4417 (2)0.56865 (9)0.0274
O60.99453 (17)0.28675 (16)0.60708 (7)0.0270
O70.56049 (19)0.63292 (16)0.56760 (6)0.0310
O80.37853 (18)0.35613 (19)0.67922 (6)0.0297
O90.56267 (18)0.03378 (17)0.67154 (6)0.0262
O100.80574 (17)0.03214 (17)0.54462 (6)0.0277
C111.0298 (3)0.0414 (3)0.65528 (11)0.0323
H210.72870.19020.71880.0209*
H310.49480.25740.57790.0227*
H410.71520.55780.66390.0246*
H510.96640.56170.56560.0327*
H520.83230.39070.51500.0327*
H1111.14380.06800.61730.0481*
H1121.08080.02300.70240.0484*
H1130.95090.16810.66570.0470*
H50.90300.02830.52100.0428*
H90.57320.74830.58740.0468*
H100.26640.33330.65560.0451*
H120.58110.07750.71700.0406*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (7)0.0182 (7)0.0262 (7)0.0013 (7)0.0013 (6)0.0004 (6)
C20.0211 (7)0.0185 (7)0.0203 (6)0.0050 (7)0.0012 (6)0.0004 (6)
C30.0196 (7)0.0214 (7)0.0193 (6)0.0008 (7)0.0007 (6)0.0053 (6)
C40.0250 (8)0.0184 (7)0.0227 (6)0.0005 (7)0.0049 (6)0.0023 (6)
C50.0301 (8)0.0206 (7)0.0316 (8)0.0008 (8)0.0042 (7)0.0037 (7)
O60.0207 (5)0.0216 (5)0.0386 (6)0.0027 (5)0.0003 (5)0.0045 (5)
O70.0413 (7)0.0167 (5)0.0350 (6)0.0028 (6)0.0140 (6)0.0032 (5)
O80.0195 (5)0.0380 (7)0.0315 (6)0.0008 (6)0.0027 (5)0.0124 (5)
O90.0293 (6)0.0222 (5)0.0271 (5)0.0083 (6)0.0001 (5)0.0026 (5)
O100.0266 (6)0.0308 (6)0.0257 (5)0.0039 (6)0.0016 (5)0.0078 (5)
C110.0251 (8)0.0264 (8)0.0455 (9)0.0004 (8)0.0062 (8)0.0040 (8)
Geometric parameters (Å, º) top
C1—C21.531 (2)C4—H410.988
C1—O61.4431 (19)C5—O61.4365 (19)
C1—O101.3981 (18)C5—H510.983
C1—C111.510 (2)C5—H521.024
C2—C31.522 (2)O7—H90.845
C2—O91.4204 (18)O8—H100.835
C2—H211.011O9—H120.843
C3—C41.520 (2)O10—H50.843
C3—O81.4339 (18)C11—H1110.992
C3—H310.995C11—H1120.972
C4—C51.517 (2)C11—H1130.999
C4—O71.4263 (18)
C2—C1—O6108.39 (12)C3—C4—H41108.8
C2—C1—O10105.85 (12)C5—C4—H41110.8
O6—C1—O10110.94 (12)O7—C4—H41109.7
C2—C1—C11113.02 (13)C4—C5—O6111.62 (12)
O6—C1—C11105.50 (13)C4—C5—H51108.3
O10—C1—C11113.15 (13)O6—C5—H51108.0
C1—C2—C3111.08 (12)C4—C5—H52107.8
C1—C2—O9109.08 (12)O6—C5—H52108.7
C3—C2—O9109.23 (11)H51—C5—H52112.5
C1—C2—H21108.9C1—O6—C5113.61 (11)
C3—C2—H21108.9C4—O7—H9108.1
O9—C2—H21109.7C3—O8—H10108.3
C2—C3—C4110.84 (12)C2—O9—H12106.6
C2—C3—O8109.31 (12)C1—O10—H5109.8
C4—C3—O8109.42 (12)C1—C11—H111106.6
C2—C3—H31108.5C1—C11—H112107.6
C4—C3—H31108.9H111—C11—H112112.4
O8—C3—H31109.9C1—C11—H113107.2
C3—C4—C5109.95 (12)H111—C11—H113109.6
C3—C4—O7109.41 (11)H112—C11—H113113.1
C5—C4—O7108.19 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H5···O7i0.841.952.750 (2)158
O7—H9···O9ii0.852.052.852 (2)158
O9—H12···O8iii0.841.862.694 (2)174
O8—H10···O6iv0.841.952.780 (2)176
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H12O5
Mr164.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)190
a, b, c (Å)6.3661 (3), 6.6684 (3), 17.1873 (9)
V3)729.63 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.60 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.88, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
1613, 981, 894
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.01
No. of reflections981
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H5···O7i0.841.952.750 (2)158
O7—H9···O9ii0.852.052.852 (2)158
O9—H12···O8iii0.841.862.694 (2)174
O8—H10···O6iv0.841.952.780 (2)176
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals
First citationAngyal, S. J., Bethell, G. S., Cowley, D. E. & Pickles, V. A. (1976). Aust. J. Chem. 29, 1239–1247. CrossRef CAS Web of Science
First citationBarker, R. & Fletcher, H. G. (1961). J. Org. Chem. 26, 4605–4609. CrossRef CAS Web of Science
First citationBeadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5078796.
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals
First citationCalzada, E., Clarke, C. A., Roussin-Bouchard, C. & Wightman, R. H. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 517–518. CrossRef Web of Science
First citationDills, W. L. & Meyer, W. L. (1976). Biochemistry, 15, 4506–4512. CrossRef PubMed CAS Web of Science
First citationGranström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science PubMed
First citationHossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371. Web of Science CrossRef PubMed CAS
First citationIUPAC–IUBMB Joint Commission on Biochemical Nomenclature (1996). Nomenclature of Carbohydrates (Recommendations 1996). http://www.chem.qmw.ac.uk/iupac/2carb/
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS
First citationJames, K. & Angyal, S. J. (1972). Aust. J. Chem. 25, 1967–1977. CrossRef CAS
First citationJones, N. A., Fanefjord, M., Jenkinson, S. F., Sawyer, N. K., Horne, G., Hakansson, A. E., Watkin, D. J. & Fleet, G. W. J. In preparation.
First citationMatsuo, T., Shirai, Y. & Izumori, K. (2006). FASEB J. 20, A594.
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationPostema, M. H. D., Calimente, D., Liu, L. & Behrmann, T. L. (2000). J. Org. Chem. 65, 6061–6068. Web of Science CrossRef PubMed CAS
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224–???.
First citationSui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Int. J. Oncol. 27, 907–912. Web of Science PubMed CAS
First citationTakata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516. Web of Science CrossRef PubMed CAS
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds