organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­methyl-4,5-di­hydro-3a,5a-di­aza­pyrene ditriflate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: b.coe@manchester.ac.uk

(Received 23 August 2006; accepted 30 August 2006; online 8 September 2006)

The crystal structure of the title compound, C16H16N22+·2CF3O3S, is the first structure to be reported for a diquaternized derivative of 2,9-dimethyl-1,10-phenanthroline.

Comment

The compound 6,7-dihydro­dipyrido[1,2-a:2′,1′-c]pyrazine­diium dibromide (diquat dibromide) is a potent herbicide (Brian et al., 1958[Brian, R. C., Homer, R. F., Stubbs, J. & Jones, R. L. (1958). Nature (London), 181, 446-447.]), and related salts derived from 2,2′-bipyridyl and other α-diimines have also generated considerable inter­est (Summers, 1981[Summers, L. A. (1981). The Bipyridinium Herbicides. London: Academic Press.]). In recent years, the attractive redox properties of diquats have led to other uses as electron acceptors in light-harvesting chromophore-quencher systems (Ryu et al., 1992[Ryu, C. K., Wang, R.-Y., Schmehl, R. H., Ferrere, S., Ludwikow, M., Merkert, J. W., Headford, C. E. L. & Elliott, C. M. (1992). J. Am. Chem. Soc. 114, 430-438.]; Klumpp et al., 1999[Klumpp, T., Linsenmann, M., Larson, S. L., Limoges, B. R., Bürssner, D., Krissinel, E. B., Elliott, C. M. & Steiner, U. E. (1999). J. Am. Chem. Soc. 121, 1076-1087.]; Kim et al., 2003[Kim, Y.-H., Lee, H.-J., Dutta, P. K. & Das, A. (2003). Inorg. Chem. 42, 4215-4222.], 2005[Kim, Y.-H., Das, A., Zhang, H.-Y. & Dutta, P. K. (2005). J. Phys. Chem. B, 109, 6929-6032.]) and in ion-pair charge-transfer complexes (Nunn et al., 1994[Nunn, I., Eisen, B., Benedix, R. & Kisch, H. (1994). Inorg. Chem. 33, 5079-5085.]; Hofbauer et al., 1996[Hofbauer, M., Möbius, M., Knoch, F. & Benedix, R. (1996). Inorg. Chim. Acta, 247, 147-154.]; Unamuno et al., 1998[Unamuno, I., Gutiérrez-Zorrilla, J. M., Luque, A., Román, P., Lezama, L., Calvo, R. & Rojo, T. (1998). Inorg. Chem. 37, 6452-6460.]; Vitoria et al., 2002[Vitoria, P., Beitia, J. I., Gutiérrez-Zorrilla, J. M., Sáiz, E. R., Luque, A., Insausti, M. & Blanco, J. J. (2002). Inorg. Chem. 41, 4396-4404.]). Our studies directed at using diquats in novel metal-based chromophore-quencher arrays have afforded an unusually facile method for the synthesis of such compounds, including salts (I)[link] and (II) (Coe, Curati & Fitzgerald, 2006[Coe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). Synthesis, pp. 146-150.]). The structure of salt (II), 1,2,7,8-tetra­methyl-4,5-dihydro-3a,5a-diaza­pyrene ditriflate, is presented in the following paper (Coe, Fitzgerald & Raftery, 2006[Coe, B. J., Fitzgerald, E. C. & Raftery, J. (2006). Acta Cryst. E62, o4335-o4336.]).

[Scheme 1]

The mol­ecular structures of the salts (I)[link] (Fig. 1[link]) and (II) are as indicated by 1H NMR spectroscopy and, to our knowledge, the first to be reported containing these particular methyl-substituted cations. The geometrical parameters of the diquat units are as expected (Table 1[link]), and largely identical for the two compounds. The C atoms of the ethyl­ene bridge have normal tetra­hedral geometries, with N1—C13—C14—N2 torsion angles of −58.2 (3)° for (I)[link] and −58.83 (19)° for (II). Comparisons with previously published structures for other diquat compounds derived from 1,10-phenanthroline reveal generally similar bond lengths and angles, although the ethyl­ene torsion angles are somewhat smaller at ca 53–55° (Hofbauer et al., 1996[Hofbauer, M., Möbius, M., Knoch, F. & Benedix, R. (1996). Inorg. Chim. Acta, 247, 147-154.]; Unamuno et al., 1998[Unamuno, I., Gutiérrez-Zorrilla, J. M., Luque, A., Román, P., Lezama, L., Calvo, R. & Rojo, T. (1998). Inorg. Chem. 37, 6452-6460.]; Vitoria et al., 2002[Vitoria, P., Beitia, J. I., Gutiérrez-Zorrilla, J. M., Sáiz, E. R., Luque, A., Insausti, M. & Blanco, J. J. (2002). Inorg. Chem. 41, 4396-4404.]). In both compounds, the presence of the ethyl­ene bridge imparts a small twist to the 3a,5a-diaza­pyrene unit, with dihedral angles between the two aromatic outer rings of 8.85 (7)° for (I)[link] and 11.26 (5)° for (II). The crystal packing structures of both (I)[link] and (II) reveal extensive C—H⋯O inter­actions between the diquat cations and the trifluoro­methane­sulfonate counter-anions.

[Figure 1]
Figure 1
The asymmetric unit of salt (I)[link], showing 50% probability displacement ellipsoids.

Experimental

Salts (I)[link] and (II) were synthesized as reported previously (Coe, Curati & Fitzgerald, 2006[Coe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). Synthesis, pp. 146-150.]). Crystals suitable for single-crystal X-ray diffraction measurements were obtained by slow diffusion of diethyl ether vapour into acetone solutions at 295 K.

Crystal data
  • C16H16N22+·2CF3O3S

  • Mr = 534.45

  • Monoclinic, P 21 /c

  • a = 9.976 (1) Å

  • b = 12.653 (1) Å

  • c = 16.559 (2) Å

  • β = 97.426 (2)°

  • V = 2072.7 (3) Å3

  • Z = 4

  • Dx = 1.713 Mg m−3

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 (2) K

  • Block, white

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 17755 measured reflections

  • 4947 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.083

  • θmax = 28.3°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.064

  • S = 0.72

  • 4947 reflections

  • 309 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0121P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.379 (3)
C1—C9 1.397 (3)
C1—C2 1.427 (3)
C3—N2 1.344 (3)
C3—C4 1.397 (3)
C3—C15 1.486 (3)
C4—C5 1.360 (3)
C5—C6 1.402 (3)
C6—C7 1.416 (3)
C7—C8 1.348 (3)
C10—C11 1.352 (3)
C11—C12 1.403 (3)
C13—N1 1.481 (3)
C13—C14 1.498 (3)
N1—C1—C2 121.3 (2)
N2—C2—C1 120.8 (2)
N1—C13—C14 109.9 (2)
N2—C14—C13 110.2 (2)
C1—N1—C13 116.6 (2)
C2—N2—C14 115.4 (2)
N1—C13—C14—N2 −58.2 (3)

All H atoms were included in calculated positions, with C—H = 0.95 (CH), 0.99 (CH2) and 0.98 Å (CH3). Uiso(H) values were fixed at 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

3,6-Dimethyl-4,5-dihydro-3a,5a-diazapyrene ditriflate top
Crystal data top
C16H16N22+·2CF3O3SF(000) = 1088
Mr = 534.45Dx = 1.713 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9760 (9) ÅCell parameters from 1610 reflections
b = 12.6530 (12) Åθ = 2.5–21.7°
c = 16.5590 (15) ŵ = 0.35 mm1
β = 97.426 (2)°T = 100 K
V = 2072.7 (3) Å3Block, white
Z = 40.10 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
φ and ω scansh = 1313
17755 measured reflectionsk = 1616
4947 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.0121P)2]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1567 (3)0.1077 (2)0.15172 (14)0.0174 (6)
C20.0181 (3)0.1359 (2)0.13050 (15)0.0167 (6)
C30.1544 (3)0.2676 (2)0.12110 (15)0.0190 (6)
C40.2452 (3)0.1945 (2)0.08142 (15)0.0230 (7)
H40.33420.21640.06090.028*
C50.2075 (3)0.0925 (2)0.07179 (14)0.0222 (7)
H50.27210.04280.04780.027*
C60.0743 (3)0.0598 (2)0.09695 (15)0.0188 (7)
C70.0315 (3)0.0463 (2)0.09105 (15)0.0248 (7)
H70.09490.09830.06950.030*
C80.0976 (3)0.0747 (2)0.11544 (15)0.0251 (7)
H80.12330.14680.11310.030*
C90.1952 (3)0.0023 (2)0.14464 (15)0.0193 (6)
C100.3325 (3)0.0229 (2)0.16485 (15)0.0252 (7)
H100.36100.09420.16140.030*
C110.4247 (3)0.0527 (2)0.18913 (15)0.0248 (7)
H110.51700.03400.20330.030*
C120.3847 (3)0.1586 (2)0.19352 (15)0.0203 (7)
C130.2087 (2)0.29466 (19)0.17123 (15)0.0188 (6)
H13A0.20720.32080.11480.023*
H13B0.27300.33870.20730.023*
C140.0704 (2)0.30377 (19)0.19652 (15)0.0180 (6)
H14A0.07310.28150.25400.022*
H14B0.04020.37830.19220.022*
C150.1984 (2)0.37606 (18)0.13973 (15)0.0228 (7)
H15A0.19600.38410.19880.034*
H15B0.29070.38790.11310.034*
H15C0.13750.42780.11960.034*
C160.4851 (2)0.2445 (2)0.21452 (15)0.0268 (7)
H16A0.48110.29460.16910.040*
H16B0.57600.21400.22480.040*
H16C0.46440.28140.26340.040*
C170.8492 (3)0.0991 (2)0.41836 (16)0.0226 (7)
C180.3750 (3)0.1503 (2)0.44510 (19)0.0326 (8)
F10.87856 (15)0.00203 (12)0.44659 (9)0.0344 (4)
F20.94339 (16)0.16427 (11)0.45590 (9)0.0313 (4)
F30.73160 (15)0.12689 (13)0.44114 (9)0.0394 (5)
F40.43119 (17)0.10610 (13)0.38467 (9)0.0454 (5)
F50.25290 (18)0.11155 (14)0.44460 (11)0.0623 (6)
F60.44811 (18)0.11972 (12)0.51482 (10)0.0517 (6)
N10.2535 (2)0.18299 (16)0.17606 (12)0.0176 (5)
N20.0262 (2)0.23661 (16)0.14401 (12)0.0164 (5)
O10.97977 (17)0.06831 (13)0.29701 (10)0.0249 (5)
O20.73879 (17)0.02953 (13)0.28035 (10)0.0259 (5)
O30.81677 (17)0.21236 (13)0.28858 (10)0.0224 (5)
O40.51139 (18)0.32162 (14)0.44150 (12)0.0380 (6)
O50.30593 (19)0.32464 (14)0.50635 (10)0.0333 (5)
O60.29322 (18)0.31170 (15)0.35924 (10)0.0367 (6)
S10.84551 (7)0.10272 (5)0.30835 (4)0.01910 (17)
S20.37134 (7)0.29347 (6)0.43738 (4)0.02275 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0226 (16)0.0185 (15)0.0118 (14)0.0006 (14)0.0055 (12)0.0023 (12)
C20.0208 (16)0.0182 (16)0.0119 (14)0.0005 (13)0.0052 (12)0.0022 (12)
C30.0205 (16)0.0247 (17)0.0127 (15)0.0008 (13)0.0059 (13)0.0033 (12)
C40.0207 (17)0.0312 (18)0.0168 (15)0.0008 (14)0.0017 (13)0.0008 (14)
C50.0228 (18)0.0275 (18)0.0167 (15)0.0107 (14)0.0042 (13)0.0017 (13)
C60.0247 (17)0.0205 (16)0.0124 (15)0.0051 (13)0.0067 (13)0.0003 (12)
C70.043 (2)0.0167 (17)0.0164 (16)0.0101 (14)0.0088 (15)0.0025 (12)
C80.045 (2)0.0155 (16)0.0171 (16)0.0054 (15)0.0112 (14)0.0024 (13)
C90.0302 (18)0.0161 (16)0.0125 (15)0.0027 (14)0.0067 (13)0.0028 (12)
C100.039 (2)0.0168 (16)0.0214 (17)0.0129 (15)0.0075 (15)0.0052 (13)
C110.0231 (18)0.0328 (19)0.0186 (17)0.0127 (15)0.0030 (14)0.0035 (14)
C120.0181 (16)0.0319 (18)0.0115 (15)0.0032 (14)0.0046 (12)0.0010 (12)
C130.0182 (16)0.0151 (15)0.0225 (16)0.0010 (13)0.0002 (12)0.0030 (13)
C140.0202 (16)0.0156 (15)0.0175 (15)0.0001 (13)0.0003 (12)0.0001 (12)
C150.0207 (16)0.0218 (17)0.0263 (17)0.0032 (13)0.0042 (13)0.0027 (13)
C160.0164 (17)0.0395 (19)0.0247 (17)0.0012 (14)0.0035 (13)0.0040 (14)
C170.0247 (17)0.0223 (17)0.0209 (16)0.0038 (15)0.0038 (14)0.0012 (14)
C180.040 (2)0.0323 (19)0.0269 (19)0.0026 (17)0.0094 (17)0.0039 (16)
F10.0492 (11)0.0270 (10)0.0253 (10)0.0003 (9)0.0012 (8)0.0095 (8)
F20.0393 (10)0.0283 (10)0.0241 (9)0.0024 (8)0.0042 (8)0.0051 (8)
F30.0307 (10)0.0633 (14)0.0262 (10)0.0108 (9)0.0114 (8)0.0019 (9)
F40.0667 (13)0.0380 (11)0.0339 (11)0.0090 (10)0.0154 (10)0.0086 (9)
F50.0548 (13)0.0509 (13)0.0855 (16)0.0332 (11)0.0257 (12)0.0145 (11)
F60.0901 (16)0.0326 (12)0.0324 (11)0.0127 (10)0.0079 (11)0.0117 (9)
N10.0201 (14)0.0191 (14)0.0142 (12)0.0022 (11)0.0047 (10)0.0016 (10)
N20.0155 (13)0.0183 (13)0.0155 (12)0.0021 (10)0.0031 (10)0.0013 (10)
O10.0234 (11)0.0304 (12)0.0226 (11)0.0059 (9)0.0089 (9)0.0030 (9)
O20.0290 (12)0.0187 (11)0.0279 (12)0.0062 (9)0.0039 (10)0.0006 (9)
O30.0327 (12)0.0128 (10)0.0211 (11)0.0003 (9)0.0012 (9)0.0017 (8)
O40.0237 (12)0.0378 (14)0.0516 (15)0.0110 (10)0.0019 (11)0.0070 (11)
O50.0487 (14)0.0353 (13)0.0175 (11)0.0102 (11)0.0099 (10)0.0025 (9)
O60.0357 (13)0.0559 (15)0.0176 (11)0.0171 (11)0.0006 (10)0.0024 (10)
S10.0236 (4)0.0181 (4)0.0154 (4)0.0003 (4)0.0019 (3)0.0009 (3)
S20.0232 (4)0.0237 (4)0.0209 (4)0.0011 (4)0.0012 (3)0.0021 (3)
Geometric parameters (Å, º) top
C1—N11.379 (3)C13—H13A0.9900
C1—C91.397 (3)C13—H13B0.9900
C1—C21.427 (3)C14—N21.480 (3)
C2—N21.377 (3)C14—H14A0.9900
C2—C61.398 (3)C14—H14B0.9900
C3—N21.344 (3)C15—H15A0.9800
C3—C41.397 (3)C15—H15B0.9800
C3—C151.486 (3)C15—H15C0.9800
C4—C51.360 (3)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.402 (3)C16—H16C0.9800
C5—H50.9500C17—F31.325 (3)
C6—C71.416 (3)C17—F11.333 (3)
C7—C81.348 (3)C17—F21.342 (3)
C7—H70.9500C17—S11.818 (3)
C8—C91.419 (3)C18—F51.312 (3)
C8—H80.9500C18—F41.332 (3)
C9—C101.403 (3)C18—F61.341 (3)
C10—C111.352 (3)C18—S21.816 (3)
C10—H100.9500O1—S11.4435 (17)
C11—C121.403 (3)O2—S11.4418 (17)
C11—H110.9500O3—S11.4456 (17)
C12—N11.340 (3)O4—S21.4349 (18)
C12—C161.488 (3)O5—S21.4417 (18)
C13—N11.481 (3)O6—S21.4402 (17)
C13—C141.498 (3)
N1—C1—C9119.6 (2)N2—C14—H14B109.6
N1—C1—C2121.3 (2)C13—C14—H14B109.6
C9—C1—C2119.1 (2)H14A—C14—H14B108.1
N2—C2—C6119.5 (2)C3—C15—H15A109.5
N2—C2—C1120.8 (2)C3—C15—H15B109.5
C6—C2—C1119.6 (2)H15A—C15—H15B109.5
N2—C3—C4118.4 (2)C3—C15—H15C109.5
N2—C3—C15120.4 (2)H15A—C15—H15C109.5
C4—C3—C15121.2 (2)H15B—C15—H15C109.5
C5—C4—C3120.7 (3)C12—C16—H16A109.5
C5—C4—H4119.6C12—C16—H16B109.5
C3—C4—H4119.6H16A—C16—H16B109.5
C4—C5—C6120.7 (3)C12—C16—H16C109.5
C4—C5—H5119.7H16A—C16—H16C109.5
C6—C5—H5119.7H16B—C16—H16C109.5
C2—C6—C5117.8 (2)F3—C17—F1107.9 (2)
C2—C6—C7119.4 (2)F3—C17—F2107.3 (2)
C5—C6—C7122.8 (3)F1—C17—F2107.2 (2)
C8—C7—C6121.2 (3)F3—C17—S1111.99 (18)
C8—C7—H7119.4F1—C17—S1110.49 (18)
C6—C7—H7119.4F2—C17—S1111.77 (19)
C7—C8—C9120.4 (3)F5—C18—F4108.6 (2)
C7—C8—H8119.8F5—C18—F6107.4 (3)
C9—C8—H8119.8F4—C18—F6106.9 (2)
C1—C9—C10117.9 (2)F5—C18—S2111.2 (2)
C1—C9—C8120.0 (3)F4—C18—S2111.9 (2)
C10—C9—C8122.1 (3)F6—C18—S2110.6 (2)
C11—C10—C9121.0 (3)C12—N1—C1122.2 (2)
C11—C10—H10119.5C12—N1—C13120.7 (2)
C9—C10—H10119.5C1—N1—C13116.6 (2)
C10—C11—C12120.3 (3)C3—N2—C2122.5 (2)
C10—C11—H11119.9C3—N2—C14121.5 (2)
C12—C11—H11119.9C2—N2—C14115.4 (2)
N1—C12—C11119.0 (3)O2—S1—O1115.05 (11)
N1—C12—C16119.5 (2)O2—S1—O3115.28 (11)
C11—C12—C16121.5 (2)O1—S1—O3114.85 (11)
N1—C13—C14109.9 (2)O2—S1—C17102.96 (12)
N1—C13—H13A109.7O1—S1—C17102.93 (11)
C14—C13—H13A109.7O3—S1—C17103.25 (12)
N1—C13—H13B109.7O4—S2—O6114.42 (12)
C14—C13—H13B109.7O4—S2—O5115.60 (12)
H13A—C13—H13B108.2O6—S2—O5114.84 (11)
N2—C14—C13110.2 (2)O4—S2—C18103.52 (13)
N2—C14—H14A109.6O6—S2—C18103.10 (13)
C13—C14—H14A109.6O5—S2—C18102.95 (13)
N1—C1—C2—N28.8 (4)C2—C1—N1—C12177.6 (2)
C9—C1—C2—N2173.7 (2)C9—C1—N1—C13171.7 (2)
N1—C1—C2—C6172.4 (2)C2—C1—N1—C135.8 (3)
C9—C1—C2—C65.1 (4)C14—C13—N1—C12149.1 (2)
N2—C3—C4—C54.9 (4)C14—C13—N1—C138.9 (3)
C15—C3—C4—C5173.5 (2)C4—C3—N2—C20.6 (4)
C3—C4—C5—C64.0 (4)C15—C3—N2—C2177.8 (2)
N2—C2—C6—C55.5 (4)C4—C3—N2—C14171.0 (2)
C1—C2—C6—C5175.7 (2)C15—C3—N2—C147.4 (3)
N2—C2—C6—C7173.4 (2)C6—C2—N2—C34.6 (4)
C1—C2—C6—C75.4 (4)C1—C2—N2—C3176.6 (2)
C4—C5—C6—C21.3 (4)C6—C2—N2—C14166.3 (2)
C4—C5—C6—C7177.6 (2)C1—C2—N2—C1412.5 (3)
C2—C6—C7—C81.6 (4)C13—C14—N2—C3143.2 (2)
C5—C6—C7—C8179.6 (2)C13—C14—N2—C245.8 (3)
C6—C7—C8—C92.6 (4)F3—C17—S1—O259.0 (2)
N1—C1—C9—C101.6 (4)F1—C17—S1—O261.3 (2)
C2—C1—C9—C10179.1 (2)F2—C17—S1—O2179.42 (17)
N1—C1—C9—C8176.6 (2)F3—C17—S1—O1178.89 (19)
C2—C1—C9—C81.0 (4)F1—C17—S1—O158.6 (2)
C7—C8—C9—C12.9 (4)F2—C17—S1—O160.7 (2)
C7—C8—C9—C10175.2 (2)F3—C17—S1—O361.3 (2)
C1—C9—C10—C111.1 (4)F1—C17—S1—O3178.36 (17)
C8—C9—C10—C11177.0 (3)F2—C17—S1—O359.1 (2)
C9—C10—C11—C120.9 (4)F5—C18—S2—O4178.2 (2)
C10—C11—C12—N12.3 (4)F4—C18—S2—O460.2 (2)
C10—C11—C12—C16175.7 (2)F6—C18—S2—O458.9 (2)
N1—C13—C14—N258.2 (3)F5—C18—S2—O662.3 (2)
C11—C12—N1—C11.8 (4)F4—C18—S2—O659.3 (2)
C16—C12—N1—C1176.3 (2)F6—C18—S2—O6178.4 (2)
C11—C12—N1—C13173.3 (2)F5—C18—S2—O557.5 (2)
C16—C12—N1—C134.8 (4)F4—C18—S2—O5179.1 (2)
C9—C1—N1—C120.1 (4)F6—C18—S2—O561.8 (2)
 

Acknowledgements

The authors thank the EPSRC for funding (grant No. GR/R81459 and a PhD studentship).

References

First citationBrian, R. C., Homer, R. F., Stubbs, J. & Jones, R. L. (1958). Nature (London), 181, 446–447.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoe, B. J., Curati, N. R. M. & Fitzgerald, E. C. (2006). Synthesis, pp. 146–150.  Web of Science CrossRef Google Scholar
First citationCoe, B. J., Fitzgerald, E. C. & Raftery, J. (2006). Acta Cryst. E62, o4335–o4336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHofbauer, M., Möbius, M., Knoch, F. & Benedix, R. (1996). Inorg. Chim. Acta, 247, 147–154.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, Y.-H., Das, A., Zhang, H.-Y. & Dutta, P. K. (2005). J. Phys. Chem. B, 109, 6929–6032.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y.-H., Lee, H.-J., Dutta, P. K. & Das, A. (2003). Inorg. Chem. 42, 4215–4222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlumpp, T., Linsenmann, M., Larson, S. L., Limoges, B. R., Bürssner, D., Krissinel, E. B., Elliott, C. M. & Steiner, U. E. (1999). J. Am. Chem. Soc. 121, 1076–1087.  Web of Science CrossRef CAS Google Scholar
First citationNunn, I., Eisen, B., Benedix, R. & Kisch, H. (1994). Inorg. Chem. 33, 5079–5085.  CrossRef CAS Web of Science Google Scholar
First citationRyu, C. K., Wang, R.-Y., Schmehl, R. H., Ferrere, S., Ludwikow, M., Merkert, J. W., Headford, C. E. L. & Elliott, C. M. (1992). J. Am. Chem. Soc. 114, 430–438.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSummers, L. A. (1981). The Bipyridinium Herbicides. London: Academic Press.  Google Scholar
First citationUnamuno, I., Gutiérrez-Zorrilla, J. M., Luque, A., Román, P., Lezama, L., Calvo, R. & Rojo, T. (1998). Inorg. Chem. 37, 6452–6460.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVitoria, P., Beitia, J. I., Gutiérrez-Zorrilla, J. M., Sáiz, E. R., Luque, A., Insausti, M. & Blanco, J. J. (2002). Inorg. Chem. 41, 4396–4404.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds