organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Methyl­sulfan­yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 11 September 2006; accepted 12 September 2006; online 20 September 2006)

The geometrical parameters for the title compound, C16H13NO2S, are normal. The non-centrosymmetric crystal packing, which is consistent with the non-zero second harmonic generation response, may be influenced by a weak inter­molecular C—H⋯O inter­action.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.], 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]) of the non-linear optical (NLO) properties and crystal structures of chalcone derivatives. It is known that substitution at either benzene ring of the chalcone skeleton substanti­ally affects the optical response (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]) and we are now exploring the role of the methyl­sulfanyl (H3CS–) substituent (Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.]) in this process.

[Scheme 1]

The non-centrosymmetric polar space group of (I)[link] is consistent with its significant second harmonic generation (SHG) response of 0.6 times that of urea (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D Bloor. RSC Special Publication No. 137, pp 112-117. Cambridge: Royal Society of Chemistry.]). The geometrical parameters for (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19]). The mol­ecule of (I)[link] is distinctly twisted about the C6—C7 and the C9—C10 bonds (Table 1[link]). The dihedral angle between the benzene ring mean planes (C1–C6 and C10–C15) in (I)[link] is 45.84 (4)°, which is significantly smaller than the equivalent value of 68.15 (6)° in 2-bromo-1-(4-methyl­phen­yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one (Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.]). The nitro group in (I)[link] is well ordered and makes a dihedral angle of 12.94 (15)° with respect to the C10–C15 benzene ring. The C16 methyl group is almost in the plane of the C1–C6 benzene ring [deviation = 0.049 (4) Å].

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of the crystal structure of (I)[link] indicates a possible inter­molecular C—H⋯O inter­action (Table 2[link]) that might help to establish the crystal packing (Fig. 2[link]). The C—H⋯O inter­action forms extended chains of mol­ecules propagating along [001]. Adjacent chains form pseudo-layers in (100), with all the mol­ecules oriented in the same sense with respect to the polar axis.

[Figure 1]
Figure 1
Molecular structure of (I)[link] showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2]
Figure 2
Part of a (100) sheet of mol­ecules in (I)[link] with C—H⋯O inter­actions shown as dashed lines.

Experimental

To a mixture of 4-(methyl­sulfan­yl)benzaldehyde (1.52 g, 0.01 mol) and 4-nitro­acetophenone (1.65 g, 0.01 mol) in ethanol (5 ml), a solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring. The mixture was stirred at room temperature for 24 h. The precipitated solid was filtered off, washed with water, dried and recrystallized from an acetone–toluene (1:1 v/v) solvent mixture (yield 86%; m.p. 409 K). Analysis for C16H13NO3S found (calculated) (%): C 64.15 (64.20), H 4.32 (4.38), N 4.66 (4.68).

Crystal data
  • C16H13NO3S

  • Mr = 299.33

  • Orthorhombic, A b a 2

  • a = 13.7388 (4) Å

  • b = 33.5802 (8) Å

  • c = 5.9538 (2) Å

  • V = 2746.80 (14) Å3

  • Z = 8

  • Dx = 1.448 Mg m−3

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.28 × 0.24 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.993

  • 27858 measured reflections

  • 3173 independent reflections

  • 2811 reflections with I > 2σ(I)

  • Rint = 0.063

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.06

  • 3173 reflections

  • 191 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0338P)2 + 1.763P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1416 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Selected torsion angles (°)

C5—C6—C7—C8 10.3 (3)
C7—C8—C9—O1 11.4 (3)
O1—C9—C10—C15 21.2 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.60 3.278 (3) 129
Symmetry code: (i) x, y, z+1.

A handful of reflections weakly violated the h00 (h ≠ 2n) systematic absence condition for the space group Aba2. Attempts to develop a model in lower-symmetry space groups were not successful. The H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(meth­yl). The methyl group was allowed to rotate but not to tip to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

3-[4-(Methylsulfanyl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C16H13NO3SF(000) = 1248
Mr = 299.33Dx = 1.448 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 6217 reflections
a = 13.7388 (4) Åθ = 2.9–27.5°
b = 33.5802 (8) ŵ = 0.25 mm1
c = 5.9538 (2) ÅT = 120 K
V = 2746.80 (14) Å3Plate, yellow
Z = 80.28 × 0.24 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3173 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω and φ scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1717
Tmin = 0.936, Tmax = 0.993k = 4343
27858 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.763P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3173 reflectionsΔρmax = 0.29 e Å3
191 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1416 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33886 (12)0.58404 (5)0.0329 (4)0.0197 (4)
H10.31260.58280.11460.024*
C20.34598 (13)0.62074 (6)0.1380 (3)0.0209 (4)
H20.32460.64420.06330.025*
C30.38469 (12)0.62311 (6)0.3537 (3)0.0187 (4)
C40.41536 (13)0.58797 (5)0.4603 (3)0.0201 (4)
H40.44220.58920.60720.024*
C50.40679 (13)0.55163 (6)0.3533 (4)0.0207 (4)
H50.42710.52810.42880.025*
C60.36880 (14)0.54878 (6)0.1360 (4)0.0201 (4)
C70.36326 (12)0.51127 (5)0.0127 (4)0.0215 (4)
H70.34670.51290.14200.026*
C80.37921 (13)0.47485 (6)0.0965 (3)0.0222 (4)
H80.38920.47170.25340.027*
C90.38153 (13)0.43940 (6)0.0505 (4)0.0229 (4)
C100.38089 (13)0.39913 (6)0.0592 (3)0.0208 (4)
C110.34357 (13)0.39365 (6)0.2756 (3)0.0218 (4)
H110.32190.41600.35970.026*
C120.33801 (13)0.35585 (6)0.3683 (3)0.0231 (4)
H120.31030.35180.51280.028*
C130.37387 (15)0.32407 (6)0.2449 (4)0.0227 (4)
C140.41321 (13)0.32839 (5)0.0330 (4)0.0229 (4)
H140.43830.30610.04640.028*
C150.41513 (13)0.36617 (6)0.0604 (3)0.0230 (4)
H150.44010.36970.20780.028*
C160.34877 (16)0.70446 (6)0.3191 (4)0.0304 (5)
H16A0.35350.73080.38880.046*
H16B0.28040.69840.28660.046*
H16C0.38620.70420.17900.046*
N10.36971 (13)0.28424 (5)0.3491 (3)0.0287 (4)
O10.38403 (11)0.44190 (4)0.2549 (3)0.0295 (3)
O20.31977 (12)0.28024 (4)0.5189 (3)0.0416 (4)
O30.41585 (12)0.25723 (4)0.2606 (3)0.0373 (4)
S10.39700 (3)0.667528 (13)0.50812 (10)0.02260 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0198 (8)0.0229 (9)0.0163 (9)0.0008 (6)0.0022 (8)0.0003 (9)
C20.0199 (9)0.0219 (10)0.0209 (10)0.0015 (7)0.0007 (8)0.0037 (8)
C30.0163 (8)0.0199 (9)0.0200 (9)0.0006 (7)0.0021 (7)0.0015 (8)
C40.0210 (8)0.0229 (9)0.0165 (11)0.0006 (7)0.0006 (7)0.0003 (8)
C50.0215 (9)0.0217 (10)0.0187 (10)0.0034 (7)0.0006 (8)0.0025 (8)
C60.0191 (9)0.0209 (10)0.0202 (10)0.0002 (7)0.0016 (8)0.0012 (8)
C70.0212 (8)0.0256 (9)0.0176 (8)0.0002 (7)0.0003 (9)0.0015 (10)
C80.0229 (10)0.0238 (10)0.0199 (10)0.0002 (8)0.0011 (8)0.0022 (8)
C90.0186 (9)0.0259 (10)0.0243 (11)0.0009 (7)0.0009 (7)0.0035 (8)
C100.0175 (9)0.0233 (9)0.0217 (12)0.0020 (7)0.0030 (7)0.0024 (8)
C110.0185 (9)0.0265 (10)0.0204 (10)0.0013 (7)0.0016 (8)0.0053 (8)
C120.0222 (9)0.0286 (11)0.0186 (10)0.0009 (8)0.0003 (8)0.0012 (8)
C130.0242 (9)0.0227 (10)0.0213 (10)0.0017 (8)0.0042 (8)0.0014 (8)
C140.0242 (9)0.0223 (9)0.0223 (11)0.0014 (7)0.0029 (9)0.0051 (9)
C150.0218 (9)0.0275 (11)0.0197 (10)0.0020 (8)0.0013 (7)0.0038 (8)
C160.0391 (12)0.0203 (10)0.0319 (13)0.0037 (9)0.0054 (10)0.0007 (9)
N10.0340 (9)0.0258 (10)0.0262 (10)0.0005 (7)0.0052 (8)0.0000 (8)
O10.0413 (9)0.0276 (8)0.0197 (8)0.0001 (6)0.0023 (7)0.0022 (6)
O20.0547 (9)0.0352 (8)0.0350 (8)0.0026 (7)0.0094 (10)0.0107 (9)
O30.0524 (9)0.0210 (8)0.0385 (9)0.0061 (7)0.0038 (8)0.0040 (7)
S10.0248 (2)0.0203 (2)0.0227 (2)0.00036 (18)0.0015 (2)0.0021 (2)
Geometric parameters (Å, º) top
C1—C21.386 (3)C10—C151.398 (3)
C1—C61.395 (3)C10—C111.399 (3)
C1—H10.9500C11—C121.386 (3)
C2—C31.392 (3)C11—H110.9500
C2—H20.9500C12—C131.386 (3)
C3—C41.405 (3)C12—H120.9500
C3—S11.760 (2)C13—C141.380 (3)
C4—C51.382 (3)C13—N11.475 (3)
C4—H40.9500C14—C151.386 (3)
C5—C61.398 (3)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.460 (3)C16—S11.801 (2)
C7—C81.339 (3)C16—H16A0.9800
C7—H70.9500C16—H16B0.9800
C8—C91.478 (3)C16—H16C0.9800
C8—H80.9500N1—O31.225 (2)
C9—O11.220 (2)N1—O21.229 (3)
C9—C101.502 (3)
C2—C1—C6122.4 (2)C15—C10—C9119.33 (17)
C2—C1—H1118.8C11—C10—C9121.39 (17)
C6—C1—H1118.8C12—C11—C10120.48 (18)
C1—C2—C3119.60 (19)C12—C11—H11119.8
C1—C2—H2120.2C10—C11—H11119.8
C3—C2—H2120.2C13—C12—C11118.31 (19)
C2—C3—C4118.92 (18)C13—C12—H12120.8
C2—C3—S1124.52 (16)C11—C12—H12120.8
C4—C3—S1116.55 (15)C14—C13—C12122.88 (18)
C5—C4—C3120.52 (18)C14—C13—N1119.64 (17)
C5—C4—H4119.7C12—C13—N1117.48 (19)
C3—C4—H4119.7C13—C14—C15118.07 (19)
C4—C5—C6121.26 (18)C13—C14—H14121.0
C4—C5—H5119.4C15—C14—H14121.0
C6—C5—H5119.4C14—C15—C10120.96 (19)
C1—C6—C5117.31 (19)C14—C15—H15119.5
C1—C6—C7119.72 (19)C10—C15—H15119.5
C5—C6—C7122.93 (18)S1—C16—H16A109.5
C8—C7—C6126.3 (2)S1—C16—H16B109.5
C8—C7—H7116.8H16A—C16—H16B109.5
C6—C7—H7116.8S1—C16—H16C109.5
C7—C8—C9121.26 (19)H16A—C16—H16C109.5
C7—C8—H8119.4H16B—C16—H16C109.5
C9—C8—H8119.4O3—N1—O2124.16 (18)
O1—C9—C8122.38 (19)O3—N1—C13118.04 (19)
O1—C9—C10119.72 (18)O2—N1—C13117.80 (17)
C8—C9—C10117.90 (17)C3—S1—C16102.82 (10)
C15—C10—C11119.24 (17)
C6—C1—C2—C30.3 (3)C8—C9—C10—C1123.6 (3)
C1—C2—C3—C40.3 (3)C15—C10—C11—C121.8 (3)
C1—C2—C3—S1179.35 (14)C9—C10—C11—C12175.91 (16)
C2—C3—C4—C50.3 (3)C10—C11—C12—C132.6 (3)
S1—C3—C4—C5178.83 (14)C11—C12—C13—C141.1 (3)
C3—C4—C5—C60.9 (3)C11—C12—C13—N1178.38 (16)
C2—C1—C6—C50.2 (3)C12—C13—C14—C151.1 (3)
C2—C1—C6—C7177.38 (16)N1—C13—C14—C15179.42 (16)
C4—C5—C6—C10.8 (3)C13—C14—C15—C101.9 (3)
C4—C5—C6—C7176.70 (17)C11—C10—C15—C140.5 (3)
C1—C6—C7—C8172.30 (18)C9—C10—C15—C14178.24 (17)
C5—C6—C7—C810.3 (3)C14—C13—N1—O312.0 (3)
C6—C7—C8—C9173.50 (18)C12—C13—N1—O3167.51 (18)
C7—C8—C9—O111.4 (3)C14—C13—N1—O2167.74 (19)
C7—C8—C9—C10168.69 (17)C12—C13—N1—O212.8 (3)
O1—C9—C10—C1521.2 (3)C2—C3—S1—C160.09 (18)
C8—C9—C10—C15158.66 (17)C4—C3—S1—C16179.01 (14)
O1—C9—C10—C11156.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.603.278 (3)129
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the `Career Award for Young Teachers' scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659–o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D Bloor. RSC Special Publication No. 137, pp 112–117. Cambridge: Royal Society of Chemistry.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds