Download citation
Download citation
link to html
The title compound, C9H7N03, was synthesized by mixing phthalimide with a solution of formaldehyde. Apart from the hydr­oxy group, the mol­ecule is essentially planar. The crystal structure is stabilized by weak O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806034994/wn2060sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806034994/wn2060Isup2.hkl
Contains datablock I

CCDC reference: 625016

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

2-(hydroxymethyl)isoindoline-1,3-dione top
Crystal data top
C9H7NO3F(000) = 368
Mr = 177.16Dx = 1.490 Mg m3
Monoclinic, P21/cMelting point = 415–416 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.324 (2) ÅCell parameters from 1807 reflections
b = 6.6040 (14) Åθ = 3.5–26.2°
c = 11.862 (2) ŵ = 0.11 mm1
β = 117.066 (3)°T = 294 K
V = 789.9 (3) Å3Block, colourless
Z = 40.30 × 0.24 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1596 independent reflections
Radiation source: fine-focus sealed tube1234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1114
Tmin = 0.967, Tmax = 0.984k = 87
4040 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.1081P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1596 reflectionsΔρmax = 0.20 e Å3
120 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17071 (11)0.25190 (18)0.70354 (11)0.0330 (3)
O10.30651 (11)0.22146 (18)0.91826 (10)0.0493 (3)
O20.06783 (10)0.19774 (17)0.48864 (9)0.0431 (3)
O30.01267 (10)0.37689 (17)0.72717 (10)0.0422 (3)
H30.01290.34860.80200.063*
C10.26590 (14)0.1567 (2)0.81165 (13)0.0335 (4)
C20.30458 (13)0.0295 (2)0.76688 (13)0.0314 (4)
C30.39417 (14)0.1795 (2)0.83422 (15)0.0380 (4)
H3A0.44250.17390.92190.046*
C40.40905 (16)0.3391 (2)0.76532 (16)0.0439 (4)
H40.46890.44220.80750.053*
C50.33612 (16)0.3469 (2)0.63471 (17)0.0456 (4)
H50.34750.45610.59100.055*
C60.24635 (15)0.1953 (3)0.56741 (15)0.0405 (4)
H60.19750.20080.47980.049*
C70.23288 (13)0.0367 (2)0.63608 (13)0.0319 (4)
C80.14586 (14)0.1454 (2)0.59437 (13)0.0320 (4)
C90.09596 (15)0.4293 (2)0.70758 (14)0.0370 (4)
H9A0.15400.51820.77520.044*
H9B0.06510.50280.62840.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0352 (7)0.0320 (7)0.0298 (7)0.0047 (5)0.0130 (5)0.0025 (5)
O10.0536 (7)0.0532 (7)0.0311 (6)0.0064 (6)0.0106 (5)0.0046 (5)
O20.0450 (6)0.0511 (7)0.0285 (6)0.0099 (5)0.0127 (5)0.0078 (5)
O30.0396 (6)0.0467 (7)0.0409 (6)0.0045 (5)0.0188 (5)0.0015 (5)
C10.0315 (7)0.0365 (8)0.0293 (7)0.0003 (6)0.0110 (6)0.0013 (6)
C20.0254 (7)0.0348 (8)0.0330 (8)0.0005 (6)0.0125 (6)0.0025 (6)
C30.0290 (7)0.0441 (9)0.0370 (8)0.0046 (7)0.0117 (6)0.0067 (7)
C40.0360 (8)0.0417 (9)0.0550 (10)0.0115 (7)0.0217 (8)0.0098 (8)
C50.0461 (9)0.0415 (9)0.0561 (11)0.0055 (7)0.0292 (8)0.0039 (8)
C60.0396 (8)0.0472 (9)0.0352 (8)0.0029 (7)0.0175 (7)0.0024 (7)
C70.0270 (7)0.0367 (8)0.0323 (8)0.0014 (6)0.0139 (6)0.0026 (6)
C80.0299 (7)0.0371 (8)0.0303 (7)0.0004 (6)0.0148 (6)0.0042 (6)
C90.0434 (8)0.0311 (8)0.0376 (8)0.0063 (6)0.0193 (7)0.0037 (6)
Geometric parameters (Å, º) top
N1—C81.3855 (18)C3—H3A0.9300
N1—C11.3942 (18)C4—C51.386 (2)
N1—C91.4586 (19)C4—H40.9300
O1—C11.2100 (18)C5—C61.391 (2)
O2—C81.2103 (17)C5—H50.9300
O3—C91.3953 (19)C6—C71.377 (2)
O3—H30.8200C6—H60.9300
C1—C21.483 (2)C7—C81.489 (2)
C2—C31.382 (2)C9—H9A0.9700
C2—C71.386 (2)C9—H9B0.9700
C3—C41.390 (2)
C8—N1—C1111.97 (12)C4—C5—H5119.2
C8—N1—C9124.36 (12)C6—C5—H5119.2
C1—N1—C9123.31 (12)C7—C6—C5117.17 (14)
C9—O3—H3109.5C7—C6—H6121.4
O1—C1—N1124.69 (14)C5—C6—H6121.4
O1—C1—C2129.32 (14)C6—C7—C2121.45 (13)
N1—C1—C2105.98 (12)C6—C7—C8130.70 (13)
C3—C2—C7121.62 (14)C2—C7—C8107.83 (12)
C3—C2—C1130.25 (13)O2—C8—N1124.44 (14)
C7—C2—C1108.13 (12)O2—C8—C7129.47 (14)
C2—C3—C4117.19 (14)N1—C8—C7106.09 (11)
C2—C3—H3A121.4O3—C9—N1112.03 (12)
C4—C3—H3A121.4O3—C9—H9A109.2
C5—C4—C3121.03 (14)N1—C9—H9A109.2
C5—C4—H4119.5O3—C9—H9B109.2
C3—C4—H4119.5N1—C9—H9B109.2
C4—C5—C6121.53 (15)H9A—C9—H9B107.9
C8—N1—C1—O1178.60 (14)C3—C2—C7—C60.9 (2)
C9—N1—C1—O18.1 (2)C1—C2—C7—C6178.98 (13)
C8—N1—C1—C20.50 (16)C3—C2—C7—C8179.63 (13)
C9—N1—C1—C2172.82 (12)C1—C2—C7—C80.30 (15)
O1—C1—C2—C31.5 (3)C1—N1—C8—O2179.58 (14)
N1—C1—C2—C3179.43 (14)C9—N1—C8—O27.2 (2)
O1—C1—C2—C7178.56 (16)C1—N1—C8—C70.32 (16)
N1—C1—C2—C70.49 (16)C9—N1—C8—C7172.92 (13)
C7—C2—C3—C40.4 (2)C6—C7—C8—O21.6 (3)
C1—C2—C3—C4179.56 (14)C2—C7—C8—O2179.90 (15)
C2—C3—C4—C50.4 (2)C6—C7—C8—N1178.52 (15)
C3—C4—C5—C60.6 (2)C2—C7—C8—N10.00 (15)
C4—C5—C6—C70.0 (2)C8—N1—C9—O389.89 (16)
C5—C6—C7—C20.7 (2)C1—N1—C9—O382.60 (17)
C5—C6—C7—C8179.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.032.8497 (16)175
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds