metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloro(η6-p-cymene)(tri­phenyl­phosphine)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 26 September 2006; accepted 28 September 2006; online 7 October 2006)

The title compound, [Ru(C10H14)Cl2(C18H15P)], crystallizes with two mol­ecules in the asymmetric unit. It adopts the classic pseudo-tetra­hedral piano-stool structure. A comparison of the Ru—P, Ru—Cl, Ru—C(av) bond lengths and the sum of the P—Ru—Cl1, P—Ru—Cl2 and Cl1—Ru—Cl2 angles (for both independent mol­ecules) with those of previously determined compounds [(η6-arene)Ru(PPh3)Cl2] reveals that the nature of the η6-arene ligand has a marginal effect on these structural parameters.

Comment

Organometallic arene ruthenium(II) complexes have attracted much inter­est for a range of uses, including DNA-binding studies, chemosensors, highly selective receptors, catalysis and for the development of chiral half-sandwich compounds (Dorcier et al., 2005[Dorcier, A., Dyson, P. J., Gossens, C., Rothlisberger, U., Scopelliti, R. & Tavernelli, I. (2005). Organometallics, 24, 2114-2123.]; Buryak & Severin, 2005[Buryak, A. & Severin, K. (2005). J. Am. Chem. Soc. 127, 3700-3701.]; Ion et al., 2006[Ion, L., Morales, D., Pérez, J., Riera, L., Riera, V., Kowenicki, R. A. & McPartlin, M. (2006). Chem. Commun. pp. 91-93.]; Morris et al., 2006[Morris, D. J., Hayes, A. M. & Wills, M. (2006). J. Org. Chem. 71, 7035-7044.]; Ganter, 2003[Ganter, C. (2003). Chem. Soc. Rev. 32, 130-138.]). Tertiary phosphines, such as the ubiquitous triphenyl­phosphine, are known to rapidly cleave Ru—Cl—Ru bridges in dinuclear arene complexes to give achiral (Baldwin et al., 2002[Baldwin, R., Bennett, M. A., Hockless, D. C. R., Pertici, P., Verrazzani, A., Barretta, G. U., Marchetti, F. & Salvadori, P. (2002). J. Chem. Soc. Dalton Trans. pp. 4488-4496.]; Hansen & Nelson, 2000[Hansen, H. D. & Nelson, J. H. (2000). Organometallics, 19, 4740-4755.]; Therrien et al., 2004[Therrien, B., Vielle-Petit, L., Jeanneret-Gris, J., Stepnicka, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456-2463.]) or chiral (Therrien & Süss-Fink, 2004[Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.]; Vieille-Petit et al. (2003[Vielle-Petit, L., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. 20, 3707-3711. ]) mononuclear compounds of the type [(η6-arene)Ru(PPh3)Cl2]. Recently we reported (Dann et al., 2006[Dann, S. E., Durran, S. E., Elsegood, M. R. J., Smith, M. B., Staniland, P. M., Talib, S. & Dale, S. H. (2006). J. Organomet. Chem. In the press.]) the supra­molecular chemistry of [(η6-p-cymene)Ru(PR3)Cl2] complexes with highly functionalized P-monodentate tertiary phosphines. During efforts to prepare a mixed-metal Cu/Ru complex using pyrazine-2,3-dicarboxylic acid as a bridging ligand, we isolated and crystallographically verified the structure of the title pseudo-tetra­hedral ruthenium(II) triphenyl­phosphine complex, (I)[link].

[Scheme 1]

There are two similar mol­ecules in the asymmetric unit, so discussion will primarily focus on one of these independent mol­ecules; see Fig. 1[link] for a view of one of the two independent mol­ecules. The Ru atom has a typical piano-stool coordination environment, with an η6-coordinated p-cymene ligand, two chlorides and a triphenyl­phosphine ligand. Both mol­ecules adopt a conformation half way between staggered and eclipsed orientations with regard to the p-cymene ring and the other three coordinated atoms. The metric parameters around the Ru core (Table 1[link]) compare well with those of similar three-legged piano-stool [(η6-arene)Ru(PPh3)Cl2] complexes (II)–(VI) (Table 2[link]). The two p-cymene alkyl substituents bend very slightly away from the metal by 0.03 Å at the methyl group and 0.05 Å at the isopropyl group (for mol­ecule 1) and by 0.02 Å at the methyl group and 0.01 Å at the isopropyl group (for mol­ecule 2). The average Ru—C distances are 2.218 (2) and 2.215 (2) Å for the two independent mol­ecules, in the range found in compounds (II)–(VI) [2.202 (3)–2.249 (4) Å]. There is very little difference in the Ru—Ccentroid parameters (1.709 and 1.705 Å) for the two independent mol­ecules in (I)[link]. We also find some evidence for bond-length alternation around the p-cymene ring: average long = 1.426; average short = 1.403 Å (mol­ecule 1), (1.426 and 1.401 Å for mol­ecule 2). In previous structures (Elsegood & Tocher, 1995[Elsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147-3156.]; Therrien & Süss-Fink, 2004[Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.]; Vieille-Petit et al. (2003[Vielle-Petit, L., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. 20, 3707-3711. ]), a trans bond lengthening has been observed in the Ru—C bonds trans to P donors such as PPh3. In the case of (I)[link], the Ru1—C3, Ru1—C4, Ru2—C31 and Ru2—C32 bonds are longer than the other Ru—C bonds, with C2/C3 trans to P1 and C30/C31 trans to P2. A comparison of the sum of the P—Ru—Cl1, P—Ru—Cl2 and Cl1—Ru—Cl2 angles for (I)[link] with (II) reveals that both (η6-arene) groups have similar steric hindrance. The sum of these angles is ca 4–8° larger than found in (III)–(VI) (Table 2[link]).

In summary, we have shown that triphenyl­phosphine affords a classic pseudo-tetra­hedral (η6-p-cymene)ruth­enium(II) chloro complex with typical Ru—P/Ru—Cl bond lengths and angles.

[Figure 1]
Figure 1
The structure of one of the two independent molecules (I)[link], showing the atom-labelling scheme; the other mol­ecule is very similar. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity.

Experimental

To a CH3OH (10 ml) solution of [(η6-p-cymene)RuCl2]2 (0.043 g, 0.057 mmol) was added a CH3OH (10 ml) solution of Cu[2,3-pz(CO2)(CO2H)](PPh3)2 (0.018 g, 0.028 mmol) (pz = pyrazine). The dark-orange solution was stirred at room temperature for 2 h. The mixture was evaporated to dryness under reduced pressure, affording a dark-orange solid which was redissolved in the minimum volume of CH2Cl2 (ca 2 ml) and precipitated with diethyl ether (10 ml). The green solid was collected by suction filtration and dried in vacuo. Suitable X-ray quality crystals of (I)[link] were obtained by slow evaporation of the CH2Cl2/diethyl ether filtrate.

Crystal data
  • [Ru(C10H14)Cl2(C18H15P)]

  • Mr = 568.45

  • Monoclinic, P 21 /n

  • a = 15.4858 (8) Å

  • b = 9.1887 (5) Å

  • c = 35.0089 (19) Å

  • β = 96.568 (2)°

  • V = 4948.9 (5) Å3

  • Z = 8

  • Dx = 1.526 Mg m−3

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 150 (2) K

  • Plate, red

  • 0.71 × 0.28 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.558, Tmax = 0.913

  • 42058 measured reflections

  • 11719 independent reflections

  • 9288 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 29.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.06

  • 11719 reflections

  • 583 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0233P)2 + 4.6393P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—C1 2.213 (2)
Ru1—C2 2.216 (2)
Ru1—C3 2.245 (2)
Ru1—C4 2.247 (2)
Ru1—C5 2.213 (2)
Ru1—C6 2.176 (2)
Ru2—C29 2.210 (2)
Ru2—C30 2.212 (2)
Ru2—C31 2.247 (2)
Ru2—C32 2.239 (2)
Ru2—C33 2.207 (2)
Ru2—C34 2.173 (2)

Table 2
Selected geometric parameters (Å, °) for (I) and comparison with reported compounds (II)–(VI)

  (I) (II) (III) (IV) (V) (VI)
Ru—P 2.3438 (6) [2.3442 (6)] 2.3530 (10) 2.3637 (12) 2.3533 (14) 2.3607 (10) 2.388 (1)
Ru—Cl1 2.4154 (6) [2.4154 (6)] 2.4134 (9) 2.406 (2) 2.4008 (18) 2.4117 (10) 2.423 (1)
Ru—Cl2 2.4151 (6) [2.4131 (6)] 2.3995 (10) 2.4118 (10) 2.4299 (15) 2.4118 (10) 2.412 (1)
Ru—C(av) 2.218 (2) [2.215 (2)] 2.215 (4) 2.202 (3) 2.230 (7) 2.249 (4) 2.231 (5)
P—Ru—Cl1 87.094 (19) [89.78 (2)] 91.81 (3) 86.15 (4) 85.82 (5) 84.99 (3) 86.83 (5)
P—Ru—Cl2 90.27 (2) [87.518 (19)] 86.34 (4) 86.15 (4) 91.46 (5) 88.22 (4) 82.63 (4)
Cl1—Ru—Cl2 88.41 (2) [88.91 (2)] 86.62 (4) 88.18 (3) 86.40 (6) 88.16 (4) 87.99 (4)
Σ angles 265.77 [266.21] 264.77 260.48 263.68 261.37 257.45
References: (II): Vieille-Petit et al. (2003[Vielle-Petit, L., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. 20, 3707-3711. ]); (III) Elsegood & Tocher (1995[Elsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147-3156.]); (IV): Therrien & Süss-Fink (2004[Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.]); (V): Hansen & Nelson (2000[Hansen, H. D. & Nelson, J. H. (2000). Organometallics, 19, 4740-4755.]); (VI): Baldwin et al. (2002[Baldwin, R., Bennett, M. A., Hockless, D. C. R., Pertici, P., Verrazzani, A., Barretta, G. U., Marchetti, F. & Salvadori, P. (2002). J. Chem. Soc. Dalton Trans. pp. 4488-4496.]). Value in square brackets is for the second independent molecule. Σ angles = the sum of the P—Ru—Cl1, P—Ru—Cl2 and Cl1—Ru—Cl2 angles.

H atoms were positioned geometrically (C—H = 0.95 Å for aryl, 0.98 Å for methine and 1.00 Å for methyl H atoms) and refined using a riding model; Uiso values were set at 1.2Ueq(C) (1.5Ueq for methyl H atoms).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Organometallic arene ruthenium(II) complexes have attracted much interest for a range of uses, including DNA binding studies, chemosensors, highly selective receptors, catalysis and for the development of chiral half-sandwich compounds (Dorcier et al., 2005; Buryak & Severin, 2005; Ion et al., 2006; Morris et al., 2006; Ganter, 2003). Tertiary phosphines, such as the ubiquitous triphenylphosphine, are known to rapidly cleave Ru—Cl—Ru bridges in dinuclear arene complexes to give achiral (Baldwin et al., 2002; Hansen & Nelson, 2000; Therrien et al., 2004) or chiral (Therrien & Süss-Fink, 2004; Vielle-Petit or Vieille-Petit et al. (2003) mononuclear compounds of the type (η6-arene)Ru(PPh3)Cl2. Recently we reported (Dann et al., 2006) the supramolecular chemistry of (η6-p-cymene)Ru(PR3)Cl2 complexes with highly functionalized P-monodentate tertiary phosphines. During efforts to prepare a mixed-metal Cu/Ru complex using pyrazine-2,3-dicarboxylic acid as a bridging ligand, we isolated and crystallographically verified the structure of the title pseudo-tetrahedral ruthenium(II) triphenylphosphine complex, (I).

There are two similar molecules in the asymmetric unit, so discussion will primarily focus on one of these independent molecules; see Fig. 1 for a view of one of the two independent molecules. The Ru atom has a typical piano-stool coordination environment, with an η6-coordinated p-cymene ligand, two chlorides and a triphenylphosphine ligand. Both molecules adopt a conformation half way between staggered and eclipsed orientations with regard to the p-cymene ring and the other three coordinated atoms. The metric parameters around the Ru core (Table 1) compare well with those of similar three-legged piano-stool (η6-arene)Ru(PR3)Cl2 complexes (II)–(VI) (Table 2). The two p-cymene alkyl substituents bend very slightly away from the metal by 0.03 Å at the methyl group and 0.05 Å at the isopropyl group (for molecule 1) and by 0.02 Å at the methyl group and 0.01 Å at the isopropyl group (for molecule 2). The average Ru—C distances are 2.218 (2) and 2.215 (2) Å for the two independent molecules, in the range found in compounds (II)–(VI) [2.202 (3)–2.249 (4) Å]. There is very little difference in the Ru—Ccentroid parameters (1.709 and 1.705 Å) for the two independent molecules in (I). We also find some evidence for bond-length alternation around the p-cymene ring: average long = 1.426; average short = 1.403 Å (molecule 1), (1.426 and 1.401 Å for molecule 2). In previous structures (Elsegood & Tocher, 1995; Therrien & Süss-Fink, 2004; Vielle-Petit or Vieille-Petit et al. (2003), a trans bond lengthening has been observed in the Ru—C bonds trans to P donors such as PPh3. In the case of (I), the Ru1—C3, Ru1—C4, Ru2—C31 and Ru2—C32 bonds are longer than the other Ru—C bonds, with C2/C3 trans to P1 and C30/C31 trans to P2. A comparison of the sum of the P—Ru—Cl1, P—Ru—Cl2 and Cl1—Ru—Cl2 angles for (I) with (II) reveals that both (η6-arene) groups have similar steric hinderance. The sum of these angles is ca 4–8° larger than found in (III)–(VI) (Table 2).

In summary, we have shown that triphenylphosphine affords a classic pseudo-tetrahedral (η6-p-cymene)ruthenium(II) chloride complex with typical Ru—P/Ru—Cl bond lengths and angles.

Experimental top

To a CH3OH (10 ml) solution of [(η6-p-cymene)RuCl2]2 (0.043 g, 0.057 mmol) was added a CH3OH (10 ml) solution of Cu[2,3-pz(CO2)(CO2H)](PPh3)2 (0.018 g, 0.028 mmol). The dark-orange solution was stirred at room temperature for 2 h. The mixture was evaporated to dryness under reduced pressure, affording a dark-orange solid which was redissolved in the minimum volume of CH2Cl2 (ca 2 ml) and precipitated with diethyl ether (10 ml). The green solid was collected by suction filtration and dried in vacuo. Suitable X-ray quality crystals of (I) were obtained by slow evaporation of the CH2Cl2/diethyl ether filtrate.

Refinement top

H atoms were positioned geometrically (C—H = 0.95 Å for aryl, 0.98 Å for methine and 1.00 Å for methyl H atoms) and refined using a riding model; Uiso values were set at 1.2Ueq(C) (1.5Ueq for methyl H atoms).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labelling scheme for one of the two molecules in the asymmetric unit. The other molecule is very similar. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted ed for clarity.
(η6-p-Cymene)(triphenylphosphine)ruthenium(II) dichloride top
Crystal data top
[Ru(C10H14)(C18H15P)]Cl2F(000) = 2320
Mr = 568.45Dx = 1.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20183 reflections
a = 15.4858 (8) Åθ = 2.3–28.7°
b = 9.1887 (5) ŵ = 0.93 mm1
c = 35.0089 (19) ÅT = 150 K
β = 96.568 (2)°Plate, red
V = 4948.9 (5) Å30.71 × 0.28 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
11719 independent reflections
Radiation source: sealed tube9288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω rotation with narrow frames scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2020
Tmin = 0.558, Tmax = 0.913k = 1211
42058 measured reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0233P)2 + 4.6393P]
where P = (Fo2 + 2Fc2)/3
11719 reflections(Δ/σ)max = 0.002
583 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ru(C10H14)(C18H15P)]Cl2V = 4948.9 (5) Å3
Mr = 568.45Z = 8
Monoclinic, P21/nMo Kα radiation
a = 15.4858 (8) ŵ = 0.93 mm1
b = 9.1887 (5) ÅT = 150 K
c = 35.0089 (19) Å0.71 × 0.28 × 0.10 mm
β = 96.568 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
11719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
9288 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.913Rint = 0.023
42058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
11719 reflectionsΔρmin = 0.59 e Å3
583 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.457155 (11)0.290762 (18)0.176533 (5)0.01739 (4)
Cl10.51009 (4)0.53631 (6)0.171123 (15)0.02427 (11)
Cl20.60601 (3)0.21219 (6)0.191479 (16)0.02706 (12)
C10.40512 (16)0.0910 (3)0.20082 (7)0.0281 (5)
C20.43240 (15)0.1895 (3)0.23170 (6)0.0259 (5)
H20.47270.15680.25240.031*
C30.40151 (14)0.3311 (3)0.23205 (6)0.0236 (5)
H30.42040.39300.25310.028*
C40.34170 (14)0.3851 (3)0.20120 (6)0.0239 (5)
C50.31333 (14)0.2897 (3)0.17078 (6)0.0271 (5)
H50.27250.32240.15020.033*
C60.34538 (15)0.1456 (3)0.17073 (7)0.0283 (5)
H60.32610.08360.14980.034*
C70.4374 (2)0.0629 (3)0.20136 (8)0.0399 (6)
H7A0.40900.11930.22020.060*
H7B0.50040.06390.20850.060*
H7C0.42380.10600.17580.060*
C80.30820 (15)0.5379 (3)0.20388 (7)0.0299 (5)
H80.35570.59810.21770.036*
C90.23285 (18)0.5328 (4)0.22879 (9)0.0482 (7)
H9A0.18600.47200.21620.072*
H9B0.21100.63150.23210.072*
H9C0.25340.49140.25400.072*
C100.2799 (2)0.6109 (3)0.16526 (8)0.0480 (7)
H10A0.32930.61480.15010.072*
H10B0.25970.70990.16960.072*
H10C0.23260.55470.15130.072*
P10.46883 (3)0.26578 (6)0.110695 (15)0.01762 (11)
C110.55591 (13)0.3523 (2)0.08712 (6)0.0194 (4)
C120.63292 (14)0.4011 (2)0.10733 (6)0.0246 (5)
H120.64120.39510.13460.030*
C130.69818 (15)0.4592 (3)0.08733 (7)0.0298 (5)
H130.75070.49320.10110.036*
C140.68677 (16)0.4675 (3)0.04765 (7)0.0303 (5)
H140.73180.50560.03430.036*
C150.61012 (16)0.4204 (2)0.02745 (7)0.0278 (5)
H150.60220.42680.00020.033*
C160.54484 (15)0.3639 (2)0.04698 (6)0.0246 (5)
H160.49190.33270.03300.030*
C170.47598 (14)0.0800 (2)0.09213 (6)0.0211 (4)
C180.52235 (15)0.0233 (2)0.11549 (7)0.0256 (5)
H180.54440.00120.14110.031*
C190.53643 (16)0.1620 (3)0.10142 (7)0.0316 (5)
H190.56720.23220.11760.038*
C200.50572 (16)0.1976 (3)0.06404 (8)0.0329 (6)
H200.51640.29170.05440.039*
C210.45952 (17)0.0972 (3)0.04058 (7)0.0334 (6)
H210.43800.12260.01500.040*
C220.44450 (16)0.0413 (3)0.05447 (7)0.0300 (5)
H220.41260.11010.03820.036*
C230.37291 (13)0.3476 (2)0.08398 (6)0.0208 (4)
C240.29661 (15)0.2725 (3)0.07179 (7)0.0309 (5)
H240.29400.17000.07500.037*
C250.22398 (16)0.3485 (4)0.05485 (8)0.0414 (7)
H250.17200.29710.04650.050*
C260.22702 (16)0.4972 (3)0.05011 (7)0.0390 (6)
H260.17750.54800.03840.047*
C270.30252 (16)0.5722 (3)0.06255 (7)0.0325 (6)
H270.30490.67470.05930.039*
C280.37450 (15)0.4983 (3)0.07975 (6)0.0249 (5)
H280.42560.55090.08880.030*
Ru20.952432 (11)0.071276 (18)0.175744 (5)0.01814 (5)
Cl31.10149 (3)0.14538 (6)0.192860 (16)0.02753 (12)
Cl41.00234 (4)0.17523 (6)0.169096 (15)0.02601 (12)
C290.90022 (16)0.2689 (3)0.20079 (7)0.0287 (5)
C300.92535 (15)0.1671 (3)0.23109 (6)0.0269 (5)
H300.96490.19730.25240.032*
C310.89361 (14)0.0255 (3)0.23027 (6)0.0246 (5)
H310.91070.03860.25100.030*
C320.83523 (14)0.0241 (3)0.19829 (6)0.0252 (5)
C330.80898 (14)0.0752 (3)0.16861 (6)0.0273 (5)
H330.76870.04550.14750.033*
C340.84189 (15)0.2186 (3)0.16985 (7)0.0287 (5)
H340.82420.28290.14920.034*
C350.9337 (2)0.4224 (3)0.20274 (8)0.0398 (6)
H35A0.92090.46870.17750.060*
H35B0.99670.42160.21010.060*
H35C0.90550.47710.22190.060*
C360.80193 (16)0.1783 (3)0.19884 (7)0.0318 (5)
H360.84990.24080.21140.038*
C370.72736 (19)0.1806 (4)0.22437 (9)0.0508 (8)
H37A0.74890.14620.25020.076*
H37B0.70540.28020.22590.076*
H37C0.68030.11690.21320.076*
C380.7725 (2)0.2426 (4)0.15925 (8)0.0502 (8)
H38A0.72450.18450.14650.075*
H38B0.75300.34300.16220.075*
H38C0.82110.24150.14360.075*
P20.96908 (3)0.10460 (6)0.110605 (15)0.01856 (11)
C391.05999 (13)0.0239 (2)0.08843 (6)0.0198 (4)
C401.13137 (14)0.0396 (2)0.10987 (6)0.0234 (5)
H401.13340.04630.13700.028*
C411.20001 (15)0.0934 (3)0.09141 (7)0.0267 (5)
H411.24820.13810.10610.032*
C421.19835 (15)0.0821 (3)0.05189 (7)0.0273 (5)
H421.24570.11750.03960.033*
C431.12781 (15)0.0193 (3)0.03043 (7)0.0282 (5)
H431.12640.01190.00330.034*
C441.05886 (14)0.0331 (3)0.04856 (6)0.0260 (5)
H441.01030.07590.03360.031*
C450.87456 (13)0.0282 (2)0.08155 (6)0.0216 (4)
C460.87620 (15)0.1185 (3)0.07250 (7)0.0283 (5)
H460.92770.17330.07940.034*
C470.80346 (18)0.1863 (3)0.05347 (8)0.0395 (6)
H470.80590.28650.04690.047*
C480.72790 (17)0.1091 (4)0.04406 (8)0.0449 (7)
H480.67820.15560.03100.054*
C490.72461 (16)0.0356 (4)0.05363 (8)0.0425 (7)
H490.67210.08840.04750.051*
C500.79758 (15)0.1062 (3)0.07219 (7)0.0322 (6)
H500.79490.20660.07840.039*
C510.97691 (14)0.2932 (2)0.09428 (6)0.0238 (5)
C520.94276 (17)0.3409 (3)0.05769 (7)0.0332 (5)
H520.90790.27720.04100.040*
C530.95951 (19)0.4810 (3)0.04555 (8)0.0419 (7)
H530.93560.51290.02080.050*
C541.01053 (18)0.5737 (3)0.06923 (9)0.0411 (7)
H541.02300.66850.06050.049*
C551.04391 (17)0.5296 (3)0.10582 (8)0.0373 (6)
H551.07800.59470.12240.045*
C561.02741 (15)0.3895 (3)0.11824 (7)0.0287 (5)
H561.05070.35920.14320.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01844 (8)0.02018 (9)0.01417 (8)0.00149 (7)0.00458 (6)0.00022 (6)
Cl10.0313 (3)0.0216 (3)0.0211 (3)0.0039 (2)0.0081 (2)0.0015 (2)
Cl20.0224 (3)0.0327 (3)0.0258 (3)0.0036 (2)0.0015 (2)0.0022 (2)
C10.0341 (12)0.0273 (12)0.0255 (12)0.0069 (10)0.0148 (10)0.0024 (9)
C20.0296 (12)0.0298 (12)0.0199 (11)0.0039 (10)0.0099 (9)0.0057 (9)
C30.0267 (11)0.0297 (12)0.0164 (10)0.0053 (9)0.0104 (9)0.0000 (9)
C40.0194 (10)0.0342 (13)0.0196 (11)0.0022 (9)0.0089 (8)0.0027 (9)
C50.0164 (10)0.0449 (14)0.0210 (11)0.0043 (10)0.0062 (8)0.0044 (10)
C60.0269 (11)0.0367 (13)0.0236 (12)0.0135 (10)0.0129 (9)0.0087 (10)
C70.0621 (18)0.0262 (13)0.0346 (14)0.0065 (12)0.0200 (13)0.0067 (11)
C80.0283 (12)0.0379 (14)0.0245 (12)0.0070 (10)0.0077 (10)0.0048 (10)
C90.0350 (14)0.063 (2)0.0507 (18)0.0082 (14)0.0218 (13)0.0113 (15)
C100.0525 (18)0.0525 (18)0.0391 (16)0.0257 (15)0.0056 (13)0.0005 (14)
P10.0199 (3)0.0188 (3)0.0147 (2)0.0009 (2)0.0043 (2)0.0002 (2)
C110.0229 (10)0.0165 (10)0.0202 (10)0.0013 (8)0.0077 (8)0.0001 (8)
C120.0261 (11)0.0269 (12)0.0216 (11)0.0032 (9)0.0064 (9)0.0014 (9)
C130.0271 (12)0.0301 (13)0.0334 (13)0.0074 (10)0.0086 (10)0.0044 (10)
C140.0354 (13)0.0248 (12)0.0346 (13)0.0071 (10)0.0204 (11)0.0017 (10)
C150.0376 (13)0.0255 (12)0.0224 (11)0.0022 (10)0.0125 (10)0.0000 (9)
C160.0286 (11)0.0264 (12)0.0195 (11)0.0005 (9)0.0059 (9)0.0011 (9)
C170.0263 (11)0.0182 (10)0.0205 (11)0.0019 (9)0.0093 (9)0.0012 (8)
C180.0283 (11)0.0232 (11)0.0262 (12)0.0005 (9)0.0061 (9)0.0001 (9)
C190.0351 (13)0.0203 (11)0.0405 (14)0.0015 (10)0.0093 (11)0.0024 (10)
C200.0374 (14)0.0205 (12)0.0441 (15)0.0074 (10)0.0189 (12)0.0076 (10)
C210.0462 (15)0.0294 (13)0.0258 (12)0.0073 (11)0.0094 (11)0.0075 (10)
C220.0414 (14)0.0257 (12)0.0232 (12)0.0015 (10)0.0053 (10)0.0009 (9)
C230.0217 (10)0.0272 (11)0.0142 (10)0.0009 (9)0.0052 (8)0.0012 (8)
C240.0277 (12)0.0371 (14)0.0278 (12)0.0057 (11)0.0027 (10)0.0010 (11)
C250.0219 (12)0.066 (2)0.0349 (14)0.0056 (12)0.0005 (10)0.0006 (14)
C260.0290 (13)0.0597 (18)0.0290 (13)0.0174 (12)0.0062 (10)0.0069 (13)
C270.0368 (13)0.0355 (14)0.0270 (13)0.0131 (11)0.0115 (10)0.0041 (10)
C280.0269 (11)0.0272 (12)0.0221 (11)0.0031 (9)0.0093 (9)0.0010 (9)
Ru20.01867 (8)0.02237 (9)0.01395 (8)0.00185 (7)0.00433 (6)0.00069 (6)
Cl30.0225 (2)0.0352 (3)0.0246 (3)0.0033 (2)0.0012 (2)0.0021 (2)
Cl40.0321 (3)0.0230 (3)0.0243 (3)0.0028 (2)0.0095 (2)0.0003 (2)
C290.0325 (12)0.0296 (12)0.0263 (12)0.0083 (10)0.0138 (10)0.0020 (10)
C300.0286 (12)0.0357 (13)0.0181 (11)0.0041 (10)0.0094 (9)0.0071 (9)
C310.0258 (11)0.0338 (13)0.0159 (10)0.0060 (10)0.0097 (9)0.0023 (9)
C320.0205 (10)0.0361 (13)0.0209 (11)0.0010 (9)0.0108 (9)0.0017 (9)
C330.0177 (10)0.0437 (14)0.0212 (11)0.0040 (10)0.0054 (9)0.0019 (10)
C340.0274 (12)0.0354 (13)0.0252 (12)0.0136 (10)0.0111 (9)0.0065 (10)
C350.0609 (18)0.0271 (13)0.0348 (14)0.0076 (12)0.0201 (13)0.0025 (11)
C360.0286 (12)0.0413 (14)0.0270 (12)0.0101 (11)0.0100 (10)0.0024 (11)
C370.0400 (16)0.064 (2)0.0535 (19)0.0107 (14)0.0264 (14)0.0092 (16)
C380.0548 (18)0.0579 (19)0.0384 (16)0.0300 (16)0.0077 (14)0.0062 (14)
P20.0194 (3)0.0221 (3)0.0146 (3)0.0022 (2)0.0041 (2)0.0006 (2)
C390.0212 (10)0.0210 (10)0.0180 (10)0.0004 (8)0.0064 (8)0.0011 (8)
C400.0262 (11)0.0266 (12)0.0180 (10)0.0022 (9)0.0057 (9)0.0018 (9)
C410.0244 (11)0.0289 (12)0.0272 (12)0.0058 (9)0.0050 (9)0.0042 (9)
C420.0278 (11)0.0269 (12)0.0292 (12)0.0037 (10)0.0124 (10)0.0012 (10)
C430.0307 (12)0.0360 (13)0.0192 (11)0.0021 (10)0.0085 (9)0.0003 (9)
C440.0243 (11)0.0339 (13)0.0199 (11)0.0037 (10)0.0031 (9)0.0001 (9)
C450.0195 (10)0.0304 (12)0.0155 (10)0.0004 (9)0.0049 (8)0.0004 (9)
C460.0284 (12)0.0310 (13)0.0256 (12)0.0034 (10)0.0041 (10)0.0013 (10)
C470.0425 (15)0.0407 (15)0.0350 (14)0.0170 (12)0.0031 (12)0.0027 (12)
C480.0314 (14)0.073 (2)0.0294 (14)0.0198 (14)0.0001 (11)0.0026 (14)
C490.0214 (12)0.075 (2)0.0297 (14)0.0062 (13)0.0015 (10)0.0020 (14)
C500.0265 (12)0.0463 (15)0.0235 (12)0.0090 (11)0.0015 (10)0.0036 (11)
C510.0272 (11)0.0237 (11)0.0223 (11)0.0050 (9)0.0107 (9)0.0023 (9)
C520.0405 (14)0.0322 (13)0.0279 (13)0.0051 (11)0.0086 (11)0.0030 (10)
C530.0526 (17)0.0387 (15)0.0379 (15)0.0152 (13)0.0202 (13)0.0151 (12)
C540.0461 (16)0.0266 (13)0.0559 (18)0.0100 (12)0.0280 (14)0.0113 (12)
C550.0382 (14)0.0236 (12)0.0533 (17)0.0006 (11)0.0184 (12)0.0051 (12)
C560.0303 (12)0.0264 (12)0.0312 (13)0.0040 (10)0.0118 (10)0.0026 (10)
Geometric parameters (Å, º) top
Ru1—C12.213 (2)Ru2—C292.210 (2)
Ru1—C22.216 (2)Ru2—C302.212 (2)
Ru1—C32.245 (2)Ru2—C312.247 (2)
Ru1—C42.247 (2)Ru2—C322.239 (2)
Ru1—C52.213 (2)Ru2—C332.207 (2)
Ru1—C62.176 (2)Ru2—C342.173 (2)
Ru1—P12.3438 (6)Ru2—P22.3442 (6)
Ru1—Cl12.4154 (6)Ru2—Cl32.4154 (6)
Ru1—Cl22.4151 (6)Ru2—Cl42.4131 (6)
C1—C61.412 (3)C29—C341.407 (3)
C1—C21.436 (3)C29—C301.435 (3)
C1—C71.499 (3)C29—C351.502 (3)
C2—C31.387 (3)C30—C311.389 (3)
C2—H20.9500C30—H300.9500
C3—C41.429 (3)C31—C321.431 (3)
C3—H30.9500C31—H310.9500
C4—C51.410 (3)C32—C331.408 (3)
C4—C81.504 (3)C32—C361.509 (3)
C5—C61.414 (3)C33—C341.411 (3)
C5—H50.9500C33—H330.9500
C6—H60.9500C34—H340.9500
C7—H7A0.9800C35—H35A0.9800
C7—H7B0.9800C35—H35B0.9800
C7—H7C0.9800C35—H35C0.9800
C8—C101.528 (4)C36—C381.527 (4)
C8—C91.535 (3)C36—C371.539 (3)
C8—H81.0000C36—H361.0000
C9—H9A0.9800C37—H37A0.9800
C9—H9B0.9800C37—H37B0.9800
C9—H9C0.9800C37—H37C0.9800
C10—H10A0.9800C38—H38A0.9800
C10—H10B0.9800C38—H38B0.9800
C10—H10C0.9800C38—H38C0.9800
P1—C231.824 (2)P2—C451.825 (2)
P1—C171.835 (2)P2—C511.833 (2)
P1—C111.840 (2)P2—C391.840 (2)
C11—C121.390 (3)C39—C401.391 (3)
C11—C161.400 (3)C39—C441.397 (3)
C12—C131.399 (3)C40—C411.396 (3)
C12—H120.9500C40—H400.9500
C13—C141.382 (3)C41—C421.385 (3)
C13—H130.9500C41—H410.9500
C14—C151.380 (3)C42—C431.379 (3)
C14—H140.9500C42—H420.9500
C15—C161.385 (3)C43—C441.389 (3)
C15—H150.9500C43—H430.9500
C16—H160.9500C44—H440.9500
C17—C181.396 (3)C45—C461.385 (3)
C17—C221.398 (3)C45—C501.398 (3)
C18—C191.393 (3)C46—C471.389 (3)
C18—H180.9500C46—H460.9500
C19—C201.380 (4)C47—C481.376 (4)
C19—H190.9500C47—H470.9500
C20—C211.379 (4)C48—C491.373 (4)
C20—H200.9500C48—H480.9500
C21—C221.391 (3)C49—C501.397 (4)
C21—H210.9500C49—H490.9500
C22—H220.9500C50—H500.9500
C23—C241.392 (3)C51—C561.396 (3)
C23—C281.394 (3)C51—C521.399 (3)
C24—C251.397 (4)C52—C531.389 (4)
C24—H240.9500C52—H520.9500
C25—C261.378 (4)C53—C541.374 (4)
C25—H250.9500C53—H530.9500
C26—C271.384 (4)C54—C551.386 (4)
C26—H260.9500C54—H540.9500
C27—C281.383 (3)C55—C561.391 (3)
C27—H270.9500C55—H550.9500
C28—H280.9500C56—H560.9500
C6—Ru1—C137.53 (9)C34—Ru2—C3337.58 (9)
C6—Ru1—C537.57 (9)C34—Ru2—C2937.44 (9)
C1—Ru1—C567.95 (9)C33—Ru2—C2967.81 (9)
C6—Ru1—C266.99 (9)C34—Ru2—C3066.99 (9)
C1—Ru1—C237.83 (8)C33—Ru2—C3078.66 (9)
C5—Ru1—C278.75 (9)C29—Ru2—C3037.87 (9)
C6—Ru1—C378.58 (8)C34—Ru2—C3267.42 (9)
C1—Ru1—C367.14 (8)C33—Ru2—C3236.91 (8)
C5—Ru1—C366.27 (8)C29—Ru2—C3280.44 (9)
C2—Ru1—C336.21 (8)C30—Ru2—C3266.70 (9)
C6—Ru1—C467.23 (9)C34—Ru2—C3178.80 (8)
C1—Ru1—C480.31 (9)C33—Ru2—C3166.33 (8)
C5—Ru1—C436.86 (8)C29—Ru2—C3167.31 (9)
C2—Ru1—C466.58 (8)C30—Ru2—C3136.31 (9)
C3—Ru1—C437.10 (8)C32—Ru2—C3137.21 (8)
C6—Ru1—P189.90 (6)C34—Ru2—P289.96 (6)
C1—Ru1—P1111.66 (6)C33—Ru2—P296.26 (6)
C5—Ru1—P195.75 (6)C29—Ru2—P2111.38 (6)
C2—Ru1—P1148.91 (6)C30—Ru2—P2148.57 (7)
C3—Ru1—P1161.43 (6)C32—Ru2—P2125.30 (6)
C4—Ru1—P1124.76 (6)C31—Ru2—P2162.05 (6)
C6—Ru1—Cl2124.50 (7)C34—Ru2—Cl4146.39 (7)
C1—Ru1—Cl292.83 (7)C33—Ru2—Cl4109.50 (7)
C5—Ru1—Cl2160.74 (7)C29—Ru2—Cl4160.99 (6)
C2—Ru1—Cl286.65 (6)C30—Ru2—Cl4123.57 (6)
C3—Ru1—Cl2108.25 (6)C32—Ru2—Cl487.02 (6)
C4—Ru1—Cl2144.48 (6)C31—Ru2—Cl494.12 (6)
C6—Ru1—Cl1146.99 (7)P2—Ru2—Cl487.518 (19)
C1—Ru1—Cl1161.19 (6)C34—Ru2—Cl3124.61 (7)
C5—Ru1—Cl1110.11 (7)C33—Ru2—Cl3160.79 (7)
C2—Ru1—Cl1123.68 (6)C29—Ru2—Cl393.01 (7)
C3—Ru1—Cl194.65 (6)C30—Ru2—Cl386.68 (6)
C4—Ru1—Cl187.81 (6)C32—Ru2—Cl3144.40 (6)
P1—Ru1—Cl187.094 (19)C31—Ru2—Cl3108.11 (6)
P1—Ru1—Cl290.27 (2)P2—Ru2—Cl389.78 (2)
Cl2—Ru1—Cl188.41 (2)Cl4—Ru2—Cl388.91 (2)
C6—C1—C2116.7 (2)C34—C29—C30116.8 (2)
C6—C1—C7122.2 (2)C34—C29—C35122.1 (2)
C2—C1—C7121.1 (2)C30—C29—C35121.1 (2)
C6—C1—Ru169.81 (13)C34—C29—Ru269.87 (13)
C2—C1—Ru171.20 (12)C30—C29—Ru271.13 (13)
C7—C1—Ru1130.66 (17)C35—C29—Ru2130.51 (17)
C3—C2—C1121.7 (2)C31—C30—C29122.0 (2)
C3—C2—Ru173.03 (13)C31—C30—Ru273.23 (13)
C1—C2—Ru170.97 (12)C29—C30—Ru271.00 (12)
C3—C2—H2119.1C31—C30—H30119.0
C1—C2—H2119.1C29—C30—H30119.0
Ru1—C2—H2129.4Ru2—C30—H30129.3
C2—C3—C4120.9 (2)C30—C31—C32120.3 (2)
C2—C3—Ru170.76 (13)C30—C31—Ru270.47 (12)
C4—C3—Ru171.51 (12)C32—C31—Ru271.10 (12)
C2—C3—H3119.5C30—C31—H31119.8
C4—C3—H3119.5C32—C31—H31119.8
Ru1—C3—H3131.0Ru2—C31—H31131.4
C5—C4—C3118.3 (2)C33—C32—C31118.3 (2)
C5—C4—C8123.2 (2)C33—C32—C36123.2 (2)
C3—C4—C8118.4 (2)C31—C32—C36118.4 (2)
C5—C4—Ru170.29 (12)C33—C32—Ru270.32 (12)
C3—C4—Ru171.39 (12)C31—C32—Ru271.70 (12)
C8—C4—Ru1132.83 (16)C36—C32—Ru2131.63 (16)
C4—C5—C6120.3 (2)C32—C33—C34120.7 (2)
C4—C5—Ru172.86 (12)C32—C33—Ru272.77 (12)
C6—C5—Ru169.78 (12)C34—C33—Ru269.91 (13)
C4—C5—H5119.9C32—C33—H33119.7
C6—C5—H5119.9C34—C33—H33119.7
Ru1—C5—H5130.0Ru2—C33—H33130.2
C1—C6—C5122.1 (2)C29—C34—C33121.9 (2)
C1—C6—Ru172.66 (13)C29—C34—Ru272.69 (13)
C5—C6—Ru172.64 (13)C33—C34—Ru272.51 (13)
C1—C6—H6118.9C29—C34—H34119.1
C5—C6—H6118.9C33—C34—H34119.1
Ru1—C6—H6128.0Ru2—C34—H34128.0
C1—C7—H7A109.5C29—C35—H35A109.5
C1—C7—H7B109.5C29—C35—H35B109.5
H7A—C7—H7B109.5H35A—C35—H35B109.5
C1—C7—H7C109.5C29—C35—H35C109.5
H7A—C7—H7C109.5H35A—C35—H35C109.5
H7B—C7—H7C109.5H35B—C35—H35C109.5
C4—C8—C10114.9 (2)C32—C36—C38114.7 (2)
C4—C8—C9107.3 (2)C32—C36—C37107.5 (2)
C10—C8—C9110.9 (2)C38—C36—C37110.8 (2)
C4—C8—H8107.9C32—C36—H36107.9
C10—C8—H8107.9C38—C36—H36107.9
C9—C8—H8107.9C37—C36—H36107.9
C8—C9—H9A109.5C36—C37—H37A109.5
C8—C9—H9B109.5C36—C37—H37B109.5
H9A—C9—H9B109.5H37A—C37—H37B109.5
C8—C9—H9C109.5C36—C37—H37C109.5
H9A—C9—H9C109.5H37A—C37—H37C109.5
H9B—C9—H9C109.5H37B—C37—H37C109.5
C8—C10—H10A109.5C36—C38—H38A109.5
C8—C10—H10B109.5C36—C38—H38B109.5
H10A—C10—H10B109.5H38A—C38—H38B109.5
C8—C10—H10C109.5C36—C38—H38C109.5
H10A—C10—H10C109.5H38A—C38—H38C109.5
H10B—C10—H10C109.5H38B—C38—H38C109.5
C23—P1—C17106.28 (10)C45—P2—C51105.52 (10)
C23—P1—C11100.81 (10)C45—P2—C39102.32 (10)
C17—P1—C1199.57 (9)C51—P2—C3999.69 (10)
C23—P1—Ru1108.29 (7)C45—P2—Ru2108.75 (7)
C17—P1—Ru1117.00 (7)C51—P2—Ru2116.45 (7)
C11—P1—Ru1122.80 (7)C39—P2—Ru2122.17 (7)
C12—C11—C16119.1 (2)C40—C39—C44118.89 (19)
C12—C11—P1122.77 (16)C40—C39—P2122.71 (16)
C16—C11—P1118.12 (16)C44—C39—P2118.32 (16)
C11—C12—C13119.7 (2)C39—C40—C41119.9 (2)
C11—C12—H12120.2C39—C40—H40120.0
C13—C12—H12120.2C41—C40—H40120.0
C14—C13—C12120.5 (2)C42—C41—C40120.5 (2)
C14—C13—H13119.8C42—C41—H41119.7
C12—C13—H13119.8C40—C41—H41119.7
C15—C14—C13120.1 (2)C43—C42—C41119.9 (2)
C15—C14—H14120.0C43—C42—H42120.0
C13—C14—H14120.0C41—C42—H42120.0
C14—C15—C16119.9 (2)C42—C43—C44119.9 (2)
C14—C15—H15120.1C42—C43—H43120.1
C16—C15—H15120.1C44—C43—H43120.1
C15—C16—C11120.8 (2)C43—C44—C39120.9 (2)
C15—C16—H16119.6C43—C44—H44119.6
C11—C16—H16119.6C39—C44—H44119.6
C18—C17—C22118.7 (2)C46—C45—C50118.9 (2)
C18—C17—P1118.21 (16)C46—C45—P2117.87 (17)
C22—C17—P1122.81 (17)C50—C45—P2122.78 (18)
C19—C18—C17120.4 (2)C45—C46—C47120.7 (2)
C19—C18—H18119.8C45—C46—H46119.6
C17—C18—H18119.8C47—C46—H46119.6
C20—C19—C18120.1 (2)C48—C47—C46120.3 (3)
C20—C19—H19120.0C48—C47—H47119.9
C18—C19—H19120.0C46—C47—H47119.9
C21—C20—C19120.4 (2)C49—C48—C47119.7 (2)
C21—C20—H20119.8C49—C48—H48120.2
C19—C20—H20119.8C47—C48—H48120.2
C20—C21—C22120.0 (2)C48—C49—C50120.8 (2)
C20—C21—H21120.0C48—C49—H49119.6
C22—C21—H21120.0C50—C49—H49119.6
C21—C22—C17120.5 (2)C49—C50—C45119.6 (3)
C21—C22—H22119.7C49—C50—H50120.2
C17—C22—H22119.7C45—C50—H50120.2
C24—C23—C28119.0 (2)C56—C51—C52118.6 (2)
C24—C23—P1124.45 (18)C56—C51—P2117.69 (17)
C28—C23—P1116.14 (16)C52—C51—P2123.40 (19)
C23—C24—C25119.7 (2)C53—C52—C51120.4 (3)
C23—C24—H24120.1C53—C52—H52119.8
C25—C24—H24120.1C51—C52—H52119.8
C26—C25—C24120.7 (2)C54—C53—C52120.3 (3)
C26—C25—H25119.7C54—C53—H53119.9
C24—C25—H25119.7C52—C53—H53119.9
C25—C26—C27119.7 (2)C53—C54—C55120.3 (2)
C25—C26—H26120.2C53—C54—H54119.9
C27—C26—H26120.2C55—C54—H54119.9
C28—C27—C26120.2 (2)C54—C55—C56119.8 (3)
C28—C27—H27119.9C54—C55—H55120.1
C26—C27—H27119.9C56—C55—H55120.1
C27—C28—C23120.7 (2)C55—C56—C51120.6 (2)
C27—C28—H28119.6C55—C56—H56119.7
C23—C28—H28119.6C51—C56—H56119.7
C5—Ru1—C1—C628.79 (13)C33—Ru2—C29—C3428.94 (14)
C2—Ru1—C1—C6129.1 (2)C30—Ru2—C29—C34129.2 (2)
C3—Ru1—C1—C6101.30 (15)C32—Ru2—C29—C3465.13 (14)
C4—Ru1—C1—C665.02 (14)C31—Ru2—C29—C34101.52 (15)
P1—Ru1—C1—C658.66 (14)P2—Ru2—C29—C3459.16 (14)
Cl2—Ru1—C1—C6150.07 (13)Cl4—Ru2—C29—C34114.5 (2)
Cl1—Ru1—C1—C6116.6 (2)Cl3—Ru2—C29—C34150.10 (13)
C6—Ru1—C1—C2129.1 (2)C34—Ru2—C29—C30129.2 (2)
C5—Ru1—C1—C2100.29 (15)C33—Ru2—C29—C30100.29 (15)
C3—Ru1—C1—C227.77 (13)C32—Ru2—C29—C3064.10 (14)
C4—Ru1—C1—C264.05 (14)C31—Ru2—C29—C3027.71 (13)
P1—Ru1—C1—C2172.27 (12)P2—Ru2—C29—C30171.62 (12)
Cl2—Ru1—C1—C280.86 (13)Cl4—Ru2—C29—C3014.7 (3)
Cl1—Ru1—C1—C212.5 (3)Cl3—Ru2—C29—C3080.67 (13)
C6—Ru1—C1—C7115.7 (3)C34—Ru2—C29—C35115.6 (3)
C5—Ru1—C1—C7144.5 (3)C33—Ru2—C29—C35144.5 (3)
C2—Ru1—C1—C7115.2 (3)C30—Ru2—C29—C35115.2 (3)
C3—Ru1—C1—C7143.0 (3)C32—Ru2—C29—C35179.3 (2)
C4—Ru1—C1—C7179.3 (3)C31—Ru2—C29—C35142.9 (3)
P1—Ru1—C1—C757.0 (2)P2—Ru2—C29—C3556.4 (2)
Cl2—Ru1—C1—C734.4 (2)Cl4—Ru2—C29—C35129.9 (2)
Cl1—Ru1—C1—C7127.7 (2)Cl3—Ru2—C29—C3534.5 (2)
C6—C1—C2—C30.2 (3)C34—C29—C30—C310.3 (3)
C7—C1—C2—C3178.4 (2)C35—C29—C30—C31178.6 (2)
Ru1—C1—C2—C354.81 (19)Ru2—C29—C30—C3154.89 (19)
C6—C1—C2—Ru154.62 (17)C34—C29—C30—Ru254.56 (18)
C7—C1—C2—Ru1126.8 (2)C35—C29—C30—Ru2126.5 (2)
C6—Ru1—C2—C3102.47 (15)C34—Ru2—C30—C31102.80 (15)
C1—Ru1—C2—C3133.4 (2)C33—Ru2—C30—C3165.27 (14)
C5—Ru1—C2—C364.98 (14)C29—Ru2—C30—C31133.6 (2)
C4—Ru1—C2—C328.39 (13)C32—Ru2—C30—C3128.55 (13)
P1—Ru1—C2—C3147.39 (11)P2—Ru2—C30—C31148.66 (11)
Cl2—Ru1—C2—C3127.65 (13)Cl4—Ru2—C30—C3140.72 (15)
Cl1—Ru1—C2—C341.80 (15)Cl3—Ru2—C30—C31127.21 (13)
C6—Ru1—C2—C130.92 (14)C34—Ru2—C30—C2930.77 (14)
C5—Ru1—C2—C168.40 (14)C33—Ru2—C30—C2968.30 (15)
C3—Ru1—C2—C1133.4 (2)C32—Ru2—C30—C29105.02 (15)
C4—Ru1—C2—C1105.00 (15)C31—Ru2—C30—C29133.6 (2)
P1—Ru1—C2—C114.0 (2)P2—Ru2—C30—C2915.1 (2)
Cl2—Ru1—C2—C198.96 (13)Cl4—Ru2—C30—C29174.30 (11)
Cl1—Ru1—C2—C1175.19 (11)Cl3—Ru2—C30—C2999.22 (13)
C1—C2—C3—C40.8 (3)C29—C30—C31—C321.2 (3)
Ru1—C2—C3—C453.09 (18)Ru2—C30—C31—C3252.71 (18)
C1—C2—C3—Ru153.87 (19)C29—C30—C31—Ru253.89 (19)
C6—Ru1—C3—C266.47 (14)C34—Ru2—C31—C3066.21 (14)
C1—Ru1—C3—C228.92 (14)C33—Ru2—C31—C30103.52 (15)
C5—Ru1—C3—C2103.86 (15)C29—Ru2—C31—C3028.82 (14)
C4—Ru1—C3—C2133.7 (2)C32—Ru2—C31—C30133.5 (2)
P1—Ru1—C3—C2119.10 (19)P2—Ru2—C31—C30118.4 (2)
Cl2—Ru1—C3—C256.34 (14)Cl4—Ru2—C31—C30146.98 (13)
Cl1—Ru1—C3—C2146.19 (13)Cl3—Ru2—C31—C3056.78 (14)
C6—Ru1—C3—C467.20 (14)C34—Ru2—C31—C3267.25 (14)
C1—Ru1—C3—C4104.74 (15)C33—Ru2—C31—C3229.94 (13)
C5—Ru1—C3—C429.80 (13)C29—Ru2—C31—C32104.64 (15)
C2—Ru1—C3—C4133.7 (2)C30—Ru2—C31—C32133.5 (2)
P1—Ru1—C3—C414.6 (3)P2—Ru2—C31—C3215.1 (3)
Cl2—Ru1—C3—C4170.00 (11)Cl4—Ru2—C31—C3279.57 (13)
Cl1—Ru1—C3—C480.15 (13)Cl3—Ru2—C31—C32169.77 (12)
C2—C3—C4—C51.4 (3)C30—C31—C32—C332.1 (3)
Ru1—C3—C4—C554.18 (17)Ru2—C31—C32—C3354.49 (17)
C2—C3—C4—C8177.9 (2)C30—C31—C32—C36179.5 (2)
Ru1—C3—C4—C8129.31 (19)Ru2—C31—C32—C36128.07 (19)
C2—C3—C4—Ru152.75 (18)C30—C31—C32—Ru252.43 (18)
C6—Ru1—C4—C529.18 (14)C34—Ru2—C32—C3328.89 (14)
C1—Ru1—C4—C565.97 (15)C29—Ru2—C32—C3365.57 (15)
C2—Ru1—C4—C5102.91 (15)C30—Ru2—C32—C33102.53 (15)
C3—Ru1—C4—C5130.7 (2)C31—Ru2—C32—C33130.4 (2)
P1—Ru1—C4—C543.74 (16)P2—Ru2—C32—C3343.92 (16)
Cl2—Ru1—C4—C5147.16 (12)Cl4—Ru2—C32—C33128.76 (13)
Cl1—Ru1—C4—C5128.67 (14)Cl3—Ru2—C32—C33147.30 (12)
C6—Ru1—C4—C3101.48 (15)C34—Ru2—C32—C31101.54 (15)
C1—Ru1—C4—C364.70 (14)C33—Ru2—C32—C31130.4 (2)
C5—Ru1—C4—C3130.7 (2)C29—Ru2—C32—C3164.86 (14)
C2—Ru1—C4—C327.76 (13)C30—Ru2—C32—C3127.90 (13)
P1—Ru1—C4—C3174.40 (10)P2—Ru2—C32—C31174.36 (11)
Cl2—Ru1—C4—C316.49 (19)Cl4—Ru2—C32—C31100.81 (13)
Cl1—Ru1—C4—C3100.66 (12)Cl3—Ru2—C32—C3116.87 (19)
C6—Ru1—C4—C8146.6 (2)C34—Ru2—C32—C36146.4 (2)
C1—Ru1—C4—C8176.6 (2)C33—Ru2—C32—C36117.5 (3)
C5—Ru1—C4—C8117.5 (3)C29—Ru2—C32—C36177.0 (2)
C2—Ru1—C4—C8139.6 (2)C30—Ru2—C32—C36140.0 (2)
C3—Ru1—C4—C8111.9 (3)C31—Ru2—C32—C36112.1 (3)
P1—Ru1—C4—C873.7 (2)P2—Ru2—C32—C3673.5 (2)
Cl2—Ru1—C4—C895.4 (2)Cl4—Ru2—C32—C3611.3 (2)
Cl1—Ru1—C4—C811.2 (2)Cl3—Ru2—C32—C3695.2 (2)
C3—C4—C5—C61.5 (3)C31—C32—C33—C342.2 (3)
C8—C4—C5—C6177.8 (2)C36—C32—C33—C34179.5 (2)
Ru1—C4—C5—C653.23 (18)Ru2—C32—C33—C3453.00 (18)
C3—C4—C5—Ru154.71 (17)C31—C32—C33—Ru255.16 (17)
C8—C4—C5—Ru1128.9 (2)C36—C32—C33—Ru2127.5 (2)
C6—Ru1—C5—C4132.5 (2)C34—Ru2—C33—C32133.0 (2)
C1—Ru1—C5—C4103.74 (15)C29—Ru2—C33—C32104.15 (15)
C2—Ru1—C5—C465.77 (14)C30—Ru2—C33—C3266.12 (14)
C3—Ru1—C5—C429.99 (13)C31—Ru2—C33—C3230.17 (13)
P1—Ru1—C5—C4145.19 (13)P2—Ru2—C33—C32145.28 (13)
Cl2—Ru1—C5—C4107.2 (2)Cl4—Ru2—C33—C3255.70 (14)
Cl1—Ru1—C5—C456.19 (14)Cl3—Ru2—C33—C32107.1 (2)
C1—Ru1—C5—C628.75 (13)C29—Ru2—C33—C3428.84 (13)
C2—Ru1—C5—C666.72 (14)C30—Ru2—C33—C3466.86 (14)
C3—Ru1—C5—C6102.51 (15)C32—Ru2—C33—C34133.0 (2)
C4—Ru1—C5—C6132.5 (2)C31—Ru2—C33—C34102.82 (15)
P1—Ru1—C5—C682.31 (13)P2—Ru2—C33—C3481.74 (13)
Cl2—Ru1—C5—C625.3 (3)Cl4—Ru2—C33—C34171.32 (12)
Cl1—Ru1—C5—C6171.32 (11)Cl3—Ru2—C33—C3425.9 (3)
C2—C1—C6—C50.3 (3)C30—C29—C34—C330.4 (3)
C7—C1—C6—C5178.3 (2)C35—C29—C34—C33178.5 (2)
Ru1—C1—C6—C555.59 (19)Ru2—C29—C34—C3355.62 (19)
C2—C1—C6—Ru155.33 (17)C30—C29—C34—Ru255.19 (18)
C7—C1—C6—Ru1126.1 (2)C35—C29—C34—Ru2125.9 (2)
C4—C5—C6—C10.9 (3)C32—C33—C34—C291.4 (3)
Ru1—C5—C6—C155.60 (19)Ru2—C33—C34—C2955.70 (19)
C4—C5—C6—Ru154.65 (19)C32—C33—C34—Ru254.31 (19)
C5—Ru1—C6—C1133.0 (2)C33—Ru2—C34—C29132.7 (2)
C2—Ru1—C6—C131.15 (13)C30—Ru2—C34—C2931.10 (14)
C3—Ru1—C6—C167.20 (14)C32—Ru2—C34—C29104.31 (15)
C4—Ru1—C6—C1104.29 (15)C31—Ru2—C34—C2967.16 (14)
P1—Ru1—C6—C1127.46 (13)P2—Ru2—C34—C29126.92 (13)
Cl2—Ru1—C6—C137.21 (15)Cl4—Ru2—C34—C29147.62 (12)
Cl1—Ru1—C6—C1148.04 (12)Cl3—Ru2—C34—C2937.22 (16)
C1—Ru1—C6—C5133.0 (2)C29—Ru2—C34—C33132.7 (2)
C2—Ru1—C6—C5101.80 (15)C30—Ru2—C34—C33101.62 (15)
C3—Ru1—C6—C565.75 (14)C32—Ru2—C34—C3328.41 (13)
C4—Ru1—C6—C528.66 (13)C31—Ru2—C34—C3365.56 (14)
P1—Ru1—C6—C599.59 (13)P2—Ru2—C34—C33100.35 (13)
Cl2—Ru1—C6—C5170.16 (11)Cl4—Ru2—C34—C3314.9 (2)
Cl1—Ru1—C6—C515.1 (2)Cl3—Ru2—C34—C33169.94 (11)
C5—C4—C8—C1029.7 (3)C33—C32—C36—C3826.6 (3)
C3—C4—C8—C10153.9 (2)C31—C32—C36—C38156.1 (2)
Ru1—C4—C8—C1063.5 (3)Ru2—C32—C36—C3866.0 (3)
C5—C4—C8—C994.0 (3)C33—C32—C36—C3797.2 (3)
C3—C4—C8—C982.3 (3)C31—C32—C36—C3780.1 (3)
Ru1—C4—C8—C9172.71 (18)Ru2—C32—C36—C37170.28 (19)
C6—Ru1—P1—C2365.93 (10)C34—Ru2—P2—C4565.95 (10)
C1—Ru1—P1—C2397.28 (10)C33—Ru2—P2—C4528.83 (10)
C5—Ru1—P1—C2328.75 (10)C29—Ru2—P2—C4597.41 (10)
C2—Ru1—P1—C23106.47 (14)C30—Ru2—P2—C45107.30 (14)
C3—Ru1—P1—C2314.8 (2)C32—Ru2—P2—C454.06 (11)
C4—Ru1—P1—C234.12 (11)C31—Ru2—P2—C4515.2 (2)
Cl2—Ru1—P1—C23169.58 (8)Cl4—Ru2—P2—C4580.52 (8)
Cl1—Ru1—P1—C2381.19 (8)Cl3—Ru2—P2—C45169.44 (8)
C6—Ru1—P1—C1754.06 (10)C34—Ru2—P2—C5153.02 (11)
C1—Ru1—P1—C1722.71 (11)C33—Ru2—P2—C5190.15 (11)
C5—Ru1—P1—C1791.24 (10)C29—Ru2—P2—C5121.56 (11)
C2—Ru1—P1—C1713.52 (15)C30—Ru2—P2—C5111.68 (15)
C3—Ru1—P1—C17105.2 (2)C32—Ru2—P2—C51114.92 (11)
C4—Ru1—P1—C17115.87 (11)C31—Ru2—P2—C51103.8 (2)
Cl2—Ru1—P1—C1770.44 (8)Cl4—Ru2—P2—C51160.50 (8)
Cl1—Ru1—P1—C17158.83 (8)Cl3—Ru2—P2—C5171.58 (8)
C6—Ru1—P1—C11177.45 (11)C34—Ru2—P2—C39175.37 (11)
C1—Ru1—P1—C11146.10 (11)C33—Ru2—P2—C39147.50 (11)
C5—Ru1—P1—C11145.38 (10)C29—Ru2—P2—C39143.91 (11)
C2—Ru1—P1—C11136.91 (14)C30—Ru2—P2—C39134.03 (14)
C3—Ru1—P1—C11131.4 (2)C32—Ru2—P2—C39122.73 (11)
C4—Ru1—P1—C11120.74 (11)C31—Ru2—P2—C39133.9 (2)
Cl2—Ru1—P1—C1152.95 (8)Cl4—Ru2—P2—C3938.15 (8)
Cl1—Ru1—P1—C1135.44 (8)Cl3—Ru2—P2—C3950.77 (8)
C23—P1—C11—C12139.46 (19)C45—P2—C39—C40133.06 (19)
C17—P1—C11—C12111.78 (19)C51—P2—C39—C40118.58 (19)
Ru1—P1—C11—C1219.2 (2)Ru2—P2—C39—C4011.3 (2)
C23—P1—C11—C1643.02 (19)C45—P2—C39—C4450.0 (2)
C17—P1—C11—C1665.74 (19)C51—P2—C39—C4458.34 (19)
Ru1—P1—C11—C16163.24 (14)Ru2—P2—C39—C44171.77 (15)
C16—C11—C12—C130.7 (3)C44—C39—C40—C410.4 (3)
P1—C11—C12—C13176.77 (17)P2—C39—C40—C41177.25 (17)
C11—C12—C13—C140.4 (4)C39—C40—C41—C421.0 (3)
C12—C13—C14—C151.0 (4)C40—C41—C42—C431.0 (4)
C13—C14—C15—C160.4 (4)C41—C42—C43—C440.4 (4)
C14—C15—C16—C110.7 (4)C42—C43—C44—C390.3 (4)
C12—C11—C16—C151.3 (3)C40—C39—C44—C430.3 (3)
P1—C11—C16—C15176.31 (17)P2—C39—C44—C43176.74 (18)
C23—P1—C17—C18157.50 (17)C51—P2—C45—C46147.66 (17)
C11—P1—C17—C1898.17 (18)C39—P2—C45—C4643.80 (19)
Ru1—P1—C17—C1836.45 (19)Ru2—P2—C45—C4686.72 (17)
C23—P1—C17—C2228.9 (2)C51—P2—C45—C5040.3 (2)
C11—P1—C17—C2275.4 (2)C39—P2—C45—C50144.15 (19)
Ru1—P1—C17—C22149.97 (17)Ru2—P2—C45—C5085.33 (19)
C22—C17—C18—C190.2 (3)C50—C45—C46—C471.8 (3)
P1—C17—C18—C19174.09 (18)P2—C45—C46—C47174.17 (19)
C17—C18—C19—C201.0 (4)C45—C46—C47—C481.4 (4)
C18—C19—C20—C211.2 (4)C46—C47—C48—C490.1 (4)
C19—C20—C21—C220.7 (4)C47—C48—C49—C501.2 (4)
C20—C21—C22—C170.1 (4)C48—C49—C50—C450.8 (4)
C18—C17—C22—C210.3 (3)C46—C45—C50—C490.7 (3)
P1—C17—C22—C21173.26 (18)P2—C45—C50—C49172.70 (19)
C17—P1—C23—C2435.5 (2)C45—P2—C51—C56162.38 (17)
C11—P1—C23—C24138.87 (19)C39—P2—C51—C5691.83 (18)
Ru1—P1—C23—C2491.04 (19)Ru2—P2—C51—C5641.66 (19)
C17—P1—C23—C28152.07 (16)C45—P2—C51—C5224.5 (2)
C11—P1—C23—C2848.65 (18)C39—P2—C51—C5281.3 (2)
Ru1—P1—C23—C2881.44 (17)Ru2—P2—C51—C52145.25 (18)
C28—C23—C24—C251.4 (3)C56—C51—C52—C530.5 (3)
P1—C23—C24—C25173.70 (19)P2—C51—C52—C53172.58 (19)
C23—C24—C25—C260.1 (4)C51—C52—C53—C540.6 (4)
C24—C25—C26—C270.6 (4)C52—C53—C54—C551.7 (4)
C25—C26—C27—C280.2 (4)C53—C54—C55—C561.6 (4)
C26—C27—C28—C231.6 (3)C54—C55—C56—C510.5 (4)
C24—C23—C28—C272.2 (3)C52—C51—C56—C550.5 (3)
P1—C23—C28—C27175.08 (17)P2—C51—C56—C55172.92 (18)

Experimental details

Crystal data
Chemical formula[Ru(C10H14)(C18H15P)]Cl2
Mr568.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)15.4858 (8), 9.1887 (5), 35.0089 (19)
β (°) 96.568 (2)
V3)4948.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.71 × 0.28 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.558, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
42058, 11719, 9288
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.06
No. of reflections11719
No. of parameters583
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.59

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL and local programs.

Selected bond lengths (Å) top
Ru1—C12.213 (2)Ru2—C292.210 (2)
Ru1—C22.216 (2)Ru2—C302.212 (2)
Ru1—C32.245 (2)Ru2—C312.247 (2)
Ru1—C42.247 (2)Ru2—C322.239 (2)
Ru1—C52.213 (2)Ru2—C332.207 (2)
Ru1—C62.176 (2)Ru2—C342.173 (2)
Selected geometric parameters (Å, °) for (I) and comparison with reported compounds (II)–(VI). top
(I)(II)(III)(IV)(V)(VI)
Ru—P2.3438 (6) [2.3442 (6)]2.3530 (10)2.3637 (12)2.3533 (14)2.3607 (10)2.388 (1)
Ru—Cl12.4154 (6) [2.4154 (6)]2.4134 (9)2.406 (2)2.4008 (18)2.4117 (10)2.423 (1)
Ru—Cl22.4151 (6) [2.4131 (6)]2.3995 (10)2.4118 (10)2.4299 (15)2.4118 (10)2.412 (1)
Ru—C(av)2.218 (2) [2.215 (2)]2.215 (4)2.202 (3)2.230 (7)2.249 (4)2.231 (5)
P-Ru-Cl187.094 (19) [89.78 (2)]91.81 (3)86.15 (4)85.82 (5)84.99 (3)86.83 (5)
P—Ru—Cl290.27 (2) [87.518 (19)]86.34 (4)86.15 (4)91.46 (5)88.22 (4)82.63 (4)
Cl1—Ru—Cl288.41 (2) [88.91 (2)]86.62 (4)88.18 (3)86.40 (6)88.16 (4)87.99 (4)
Σ angles265.774 [266.208]264.77260.48263.68261.37257.45
References: (II): Vielle-Petit or Vieille-Petit et al. (2003); (III) Elsegood & Tocher (1995); (IV): Therrien & Süss-Fink (2004); (V): Hansen & Nelson (2000); (VI): Baldwin et al. (2002). Value in square brackets is for the second independent molecule. Σ angles = the sum of the P—Ru—Cl1, P—Ru—Cl2 and Cl1—Ru—Cl2 angles.
 

Acknowledgements

We acknowledge Loughborough University for the provision of a studentship (NMSB).

References

First citationBaldwin, R., Bennett, M. A., Hockless, D. C. R., Pertici, P., Verrazzani, A., Barretta, G. U., Marchetti, F. & Salvadori, P. (2002). J. Chem. Soc. Dalton Trans. pp. 4488–4496.  CrossRef Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuryak, A. & Severin, K. (2005). J. Am. Chem. Soc. 127, 3700–3701.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDann, S. E., Durran, S. E., Elsegood, M. R. J., Smith, M. B., Staniland, P. M., Talib, S. & Dale, S. H. (2006). J. Organomet. Chem. In the press.  Google Scholar
First citationDorcier, A., Dyson, P. J., Gossens, C., Rothlisberger, U., Scopelliti, R. & Tavernelli, I. (2005). Organometallics, 24, 2114–2123.  Web of Science CSD CrossRef CAS Google Scholar
First citationElsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147–3156.  CSD CrossRef CAS Web of Science Google Scholar
First citationGanter, C. (2003). Chem. Soc. Rev. 32, 130–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHansen, H. D. & Nelson, J. H. (2000). Organometallics, 19, 4740–4755.  Web of Science CSD CrossRef CAS Google Scholar
First citationIon, L., Morales, D., Pérez, J., Riera, L., Riera, V., Kowenicki, R. A. & McPartlin, M. (2006). Chem. Commun. pp. 91–93.  Web of Science CSD CrossRef Google Scholar
First citationMorris, D. J., Hayes, A. M. & Wills, M. (2006). J. Org. Chem. 71, 7035–7044.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationTherrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationTherrien, B., Vielle-Petit, L., Jeanneret-Gris, J., Stepnicka, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456–2463.  Web of Science CSD CrossRef CAS Google Scholar
First citationVielle-Petit, L., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. 20, 3707–3711.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds