organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4-Chloro­phen­yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, dDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India, and eDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 13 September 2006; accepted 13 September 2006; online 27 October 2006)

The geometrical parameters for the title compound, C16H13ClOS, are normal. The dihedral angle between the two benzene rings is 48.16 (5)°. The non-centrosymmetric crystal packing is consistent with the substantial non-zero second harmonic generation response.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.]; Harrison, Yathirajan, Sarojini et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]) of the non-linear optical (NLO) properties and crystal structures of chalcone derivatives. It is known that substitution at either benzene ring of the chalcone skeleton substanti­ally affects optical response (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]) and we are now exploring the role of the methyl­sulfanyl (H3CS–) substituent (Harrison, Yathirajan, Mithun et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Mithun, A., Narayana, B. & Sarojini, B. K. (2006). Acta Cryst. E62, o4508-o4509.]) in this process.

[Scheme 1]

Compound (I)[link] displays a substantial second harmonic generation (SHG) response to red light of 7.4 times that of urea (Watson et al., 1993[Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp 112-117. Cambridge: Royal Society of Chemistry.]). This is consistent with its polar space group. The geometrical parameters for (I)[link] fall within their expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The mol­ecule of (I)[link] is distinctly twisted about the C6—C7 and C9—C10 bonds (Table 1[link]). The dihedral angle between the benzene ring best planes (C1–C6 and C10–C15) in (I)[link] is 48.16 (5)°, which is similiar to the equivalent angle of 45.84 (4)° in 3-[4-(methyl­sulfan­yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (Harrison, Yathirajan, Mithun et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Mithun, A., Narayana, B. & Sarojini, B. K. (2006). Acta Cryst. E62, o4508-o4509.]), but substanti­ally smaller than the 68.15 (6)° seen in 2-bromo-1-(4-methyl­phen­yl)-3-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one (Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.]). The C16-methyl group in (I)[link] is slightly displaced from the C10–C15 benzene ring mean plane [deviation = 0.169 (5) Å].

A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated a possible inter­molecular C—H⋯O inter­action (Table 2[link]) that might help to establish the crystal packing, which results in columns of mol­ecules propagating in [001] with all the mol­ecules aligned in the same sense with respect to the polar axis. Then, side-by-side [001] columns of mol­ecules form pseudo-sheets in (010) (Fig. 2[link]). This packing motif is very similar to that seen in 3-[4-(methyl­sulfan­yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (Harrison, Yathirajan, Mithun et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Mithun, A., Narayana, B. & Sarojini, B. K. (2006). Acta Cryst. E62, o4508-o4509.]), although the overall symmetries and unit cells are quite different for these two phases.

[Figure 1]
Figure 1
View of (I)[link] showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2]
Figure 2
Detail of (I)[link] showing side-by-side [001] columns forming an (010) pseudo-sheet. The C—H⋯O inter­actions are shown as dashed lines.

Experimental

Aa aqueous solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of 4-(methyl­sulfan­yl)benzaldehyde (1.52 g, 0.01 mol) and 4-chloro­acetophenone (1.54 g, 0.01 mol) in ethanol (15 ml). The resulting mixture was stirred at room temperature for 24 h. The precipitated solid was filtered off, washed with water, dried and plates of (I)[link] were recrystallized from a (1:1 v/v) acetone–toluene mixture (yield 81%; m.p. 415–417 K). Analysis found (calculated) for C16H13ClOS (%): C 66.41 (66.54), H 4.46 (4.54).

Crystal data
  • C16H13ClOS

  • Mr = 288.77

  • Monoclinic, C c

  • a = 33.371 (2) Å

  • b = 6.9767 (5) Å

  • c = 5.8228 (3) Å

  • β = 90.376 (4)°

  • V = 1355.63 (14) Å3

  • Z = 4

  • Dx = 1.415 Mg m−3

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.48 × 0.24 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.983

  • 8628 measured reflections

  • 2964 independent reflections

  • 2634 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.6°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.087

  • S = 1.05

  • 2964 reflections

  • 173 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0314P)2 + 0.6117P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1399 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Selected torsion angles (°)

C5—C6—C7—O1 −21.6 (3)
C8—C9—C10—C11 −7.6 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.59 3.319 (3) 134
Symmetry code: (i) x, y, z+1.

The H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate but not to tip to best fit the electron density.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(2E)-1-(4-Chlorophenyl)-3-[4-(methylsulfanyl)phenyl]prop-2-en-1-one top
Crystal data top
C16H13ClOSF(000) = 600
Mr = 288.77Dx = 1.415 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1626 reflections
a = 33.371 (2) Åθ = 2.9–27.5°
b = 6.9767 (5) ŵ = 0.42 mm1
c = 5.8228 (3) ÅT = 120 K
β = 90.376 (4)°Plate, colourless
V = 1355.63 (14) Å30.48 × 0.24 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2964 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and φ scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 4342
Tmin = 0.823, Tmax = 0.983k = 99
8628 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.6117P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2964 reflectionsΔρmax = 0.25 e Å3
173 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 1399 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54021 (8)0.8115 (3)0.5478 (4)0.0204 (5)
H10.51840.85190.64000.025*
C20.57921 (9)0.8272 (4)0.6312 (5)0.0220 (6)
H20.58430.88020.77890.026*
C30.61055 (8)0.7644 (4)0.4957 (4)0.0216 (5)
C40.60414 (8)0.6857 (4)0.2795 (4)0.0221 (6)
H40.62590.64080.19000.026*
C50.56524 (8)0.6744 (3)0.1984 (4)0.0203 (5)
H50.56040.62300.04980.024*
C60.53297 (9)0.7367 (3)0.3295 (4)0.0192 (5)
C70.49173 (9)0.7303 (3)0.2283 (4)0.0222 (6)
C80.45713 (9)0.7309 (4)0.3847 (5)0.0214 (5)
H80.46070.69820.54190.026*
C90.42085 (8)0.7773 (4)0.3059 (4)0.0194 (6)
H90.41950.82030.15120.023*
C100.38283 (8)0.7699 (3)0.4299 (4)0.0194 (6)
C110.37873 (8)0.6891 (3)0.6506 (4)0.0193 (5)
H110.40200.64740.73150.023*
C120.34175 (8)0.6696 (4)0.7509 (4)0.0194 (6)
H120.33970.61450.89960.023*
C130.30687 (8)0.7306 (3)0.6350 (4)0.0190 (5)
C140.31051 (8)0.8129 (3)0.4189 (4)0.0207 (5)
H140.28730.85660.33910.025*
C150.34806 (8)0.8313 (3)0.3197 (4)0.0194 (5)
H150.35000.88760.17170.023*
C160.22499 (9)0.7720 (4)0.5694 (5)0.0328 (7)
H16A0.19800.74450.62580.049*
H16B0.22950.70210.42590.049*
H16C0.22770.90990.54170.049*
O10.48761 (7)0.7269 (3)0.0189 (3)0.0286 (5)
S10.26129 (2)0.69787 (9)0.77988 (9)0.02479 (17)
Cl10.65933 (2)0.78324 (11)0.60236 (9)0.03329 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (14)0.0178 (12)0.0196 (13)0.0004 (10)0.0048 (10)0.0017 (9)
C20.0303 (18)0.0164 (13)0.0194 (13)0.0007 (12)0.0000 (11)0.0022 (11)
C30.0204 (14)0.0204 (13)0.0238 (13)0.0012 (10)0.0038 (10)0.0040 (10)
C40.0218 (14)0.0189 (13)0.0256 (13)0.0013 (10)0.0036 (11)0.0013 (10)
C50.0254 (14)0.0180 (12)0.0175 (12)0.0017 (10)0.0013 (10)0.0006 (9)
C60.0229 (14)0.0130 (11)0.0217 (13)0.0003 (10)0.0012 (10)0.0017 (10)
C70.0265 (15)0.0167 (12)0.0234 (14)0.0006 (11)0.0012 (11)0.0003 (10)
C80.0236 (15)0.0193 (12)0.0214 (13)0.0018 (11)0.0021 (11)0.0014 (10)
C90.0260 (16)0.0144 (13)0.0178 (13)0.0018 (10)0.0002 (11)0.0008 (9)
C100.0231 (15)0.0149 (12)0.0204 (13)0.0002 (10)0.0016 (11)0.0027 (10)
C110.0218 (14)0.0152 (12)0.0207 (13)0.0002 (10)0.0059 (10)0.0018 (9)
C120.0274 (18)0.0147 (12)0.0161 (13)0.0020 (12)0.0024 (11)0.0001 (10)
C130.0233 (14)0.0145 (11)0.0192 (13)0.0007 (10)0.0023 (10)0.0036 (9)
C140.0225 (14)0.0196 (13)0.0201 (12)0.0021 (11)0.0016 (10)0.0002 (10)
C150.0256 (15)0.0147 (12)0.0179 (12)0.0002 (10)0.0015 (10)0.0000 (9)
C160.0185 (15)0.0423 (16)0.0375 (16)0.0030 (13)0.0010 (12)0.0062 (14)
O10.0255 (12)0.0417 (12)0.0185 (10)0.0004 (10)0.0000 (8)0.0006 (8)
S10.0227 (4)0.0266 (4)0.0251 (3)0.0007 (3)0.0030 (3)0.0013 (3)
Cl10.0237 (4)0.0407 (4)0.0354 (4)0.0031 (3)0.0060 (3)0.0009 (3)
Geometric parameters (Å, º) top
C1—C21.391 (4)C9—H90.9500
C1—C61.394 (3)C10—C151.390 (4)
C1—H10.9500C10—C111.411 (3)
C2—C31.385 (4)C11—C121.376 (4)
C2—H20.9500C11—H110.9500
C3—C41.388 (4)C12—C131.407 (4)
C3—Cl11.743 (3)C12—H120.9500
C4—C51.381 (4)C13—C141.389 (3)
C4—H40.9500C13—S11.759 (3)
C5—C61.394 (4)C14—C151.389 (4)
C5—H50.9500C14—H140.9500
C6—C71.494 (4)C15—H150.9500
C7—O11.227 (3)C16—S11.794 (3)
C7—C81.475 (4)C16—H16A0.9800
C8—C91.332 (4)C16—H16B0.9800
C8—H80.9500C16—H16C0.9800
C9—C101.465 (4)
C2—C1—C6120.3 (2)C10—C9—H9116.2
C2—C1—H1119.8C15—C10—C11117.2 (2)
C6—C1—H1119.8C15—C10—C9119.0 (2)
C3—C2—C1119.0 (2)C11—C10—C9123.5 (2)
C3—C2—H2120.5C12—C11—C10121.3 (2)
C1—C2—H2120.5C12—C11—H11119.4
C2—C3—C4121.9 (3)C10—C11—H11119.4
C2—C3—Cl1118.7 (2)C11—C12—C13120.5 (2)
C4—C3—Cl1119.4 (2)C11—C12—H12119.7
C5—C4—C3118.1 (2)C13—C12—H12119.7
C5—C4—H4120.9C14—C13—C12118.8 (3)
C3—C4—H4120.9C14—C13—S1124.7 (2)
C4—C5—C6121.5 (2)C12—C13—S1116.47 (19)
C4—C5—H5119.2C15—C14—C13119.9 (2)
C6—C5—H5119.2C15—C14—H14120.0
C5—C6—C1119.1 (2)C13—C14—H14120.0
C5—C6—C7119.2 (2)C14—C15—C10122.2 (2)
C1—C6—C7121.6 (2)C14—C15—H15118.9
O1—C7—C8122.0 (3)C10—C15—H15118.9
O1—C7—C6119.3 (2)S1—C16—H16A109.5
C8—C7—C6118.6 (2)S1—C16—H16B109.5
C9—C8—C7120.1 (2)H16A—C16—H16B109.5
C9—C8—H8120.0S1—C16—H16C109.5
C7—C8—H8120.0H16A—C16—H16C109.5
C8—C9—C10127.6 (2)H16B—C16—H16C109.5
C8—C9—H9116.2C13—S1—C16102.55 (13)
C6—C1—C2—C31.1 (4)C7—C8—C9—C10174.3 (2)
C1—C2—C3—C40.2 (4)C8—C9—C10—C15177.7 (3)
C1—C2—C3—Cl1179.6 (2)C8—C9—C10—C117.6 (4)
C2—C3—C4—C51.3 (4)C15—C10—C11—C120.9 (3)
Cl1—C3—C4—C5179.33 (18)C9—C10—C11—C12173.9 (2)
C3—C4—C5—C61.1 (4)C10—C11—C12—C130.1 (4)
C4—C5—C6—C10.2 (4)C11—C12—C13—C140.8 (4)
C4—C5—C6—C7176.9 (2)C11—C12—C13—S1179.86 (18)
C2—C1—C6—C51.3 (3)C12—C13—C14—C150.9 (3)
C2—C1—C6—C7175.7 (2)S1—C13—C14—C15179.79 (19)
C5—C6—C7—O121.6 (3)C13—C14—C15—C100.1 (4)
C1—C6—C7—O1155.4 (2)C11—C10—C15—C140.8 (4)
C5—C6—C7—C8159.2 (2)C9—C10—C15—C14174.3 (2)
C1—C6—C7—C823.8 (3)C14—C13—S1—C165.5 (2)
O1—C7—C8—C917.4 (4)C12—C13—S1—C16175.16 (19)
C6—C7—C8—C9161.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.593.319 (3)134
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the `Career Award for Young Teachers' scheme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659–o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Mithun, A., Narayana, B. & Sarojini, B. K. (2006). Acta Cryst. E62, o4508–o4509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationWatson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp 112–117. Cambridge: Royal Society of Chemistry.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds