Download citation
Download citation
link to html
In the title compound, [Co(C6H6N2O)2(H2O)4](C8H4O4)·2H2O, the CoII atom (site symmetry \overline{1}) exhibits a slightly distorted trans-CoN2O4 octa­hedral coordination geometry arising from two N-bonded isonicotinamide mol­ecules and four O atoms of water mol­ecules. The uncoordinated centrosymmetric terephthalate anion and uncoordinated water mol­ecules inter­act with the cation by way of O—H...O and N—H...O hydrogen bonds, generating a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806047763/hb2199sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806047763/hb2199Isup2.hkl
Contains datablock I

CCDC reference: 629888

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.075
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Tetraaqua(diisonicotinamide)cobalt(II) terephthalate dihydrate top
Crystal data top
[Co(C6H6N2O)2(H2O)4](C8H4O4)·2H2OZ = 1
Mr = 575.39F(000) = 299
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4962 (8) ÅCell parameters from 6347 reflections
b = 9.7585 (12) Åθ = 1.8–26.0°
c = 11.0145 (14) ŵ = 0.78 mm1
α = 105.270 (2)°T = 296 K
β = 103.908 (2)°Block, light pink
γ = 106.532 (2)°0.27 × 0.10 × 0.09 mm
V = 607.06 (13) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2329 independent reflections
Radiation source: fine-focus sealed tube2091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.910, Tmax = 0.940k = 912
3427 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difmap and geom
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.1097P]
where P = (Fo2 + 2Fc2)/3
2329 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.03491 (15)
O10.2464 (3)1.17044 (19)0.64681 (19)0.0587 (5)
O20.2047 (2)0.59417 (17)0.78812 (16)0.0485 (4)
O30.5672 (3)0.63155 (18)0.88307 (16)0.0482 (4)
O1w0.7446 (2)0.58526 (15)0.42219 (14)0.0390 (3)
H1w0.79180.67940.43170.047*
H2w0.79910.52610.38080.047*
O2w0.2449 (2)0.43736 (17)0.31225 (14)0.0444 (4)
H3w0.30030.42240.24790.053*
H4w0.09130.41150.28260.053*
O3w0.9223 (3)0.6579 (2)0.0985 (2)0.0758 (6)
H5w0.86530.58840.13700.159 (19)*
H6w0.80380.65790.04070.100 (12)*
N10.4897 (2)0.72550 (14)0.57358 (13)0.0368 (4)
N20.6010 (2)1.28402 (14)0.80159 (13)0.0504 (5)
H1n0.73871.27780.84500.060*
H2n0.56981.36900.82690.060*
C10.6764 (3)0.8524 (2)0.6503 (2)0.0393 (5)
H1A0.81710.84220.67350.047*
C20.6702 (3)0.9965 (2)0.6963 (2)0.0389 (5)
H2A0.80371.08050.74930.047*
C30.4619 (3)1.0142 (2)0.66245 (19)0.0340 (4)
C40.4298 (4)1.1642 (2)0.7040 (2)0.0410 (5)
C50.2710 (4)0.8859 (2)0.5814 (2)0.0420 (5)
H5A0.12920.89390.55430.050*
C60.2911 (4)0.7461 (2)0.5408 (2)0.0444 (5)
H6A0.15940.66080.48760.053*
C70.4059 (4)0.6791 (2)0.8652 (2)0.0380 (5)
C80.4540 (3)0.8449 (2)0.93672 (19)0.0346 (4)
C90.2790 (4)0.9004 (2)0.9280 (2)0.0432 (5)
H9A0.12910.83330.87950.052*
C100.3236 (4)1.0532 (2)0.9900 (2)0.0428 (5)
H10A0.20401.08840.98270.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0240 (2)0.0273 (2)0.0433 (3)0.00986 (16)0.00392 (16)0.00341 (16)
O10.0466 (10)0.0399 (9)0.0845 (13)0.0233 (8)0.0101 (9)0.0175 (9)
O20.0322 (8)0.0375 (8)0.0569 (10)0.0113 (7)0.0050 (7)0.0013 (7)
O30.0417 (8)0.0473 (9)0.0474 (9)0.0236 (7)0.0054 (7)0.0052 (7)
O1w0.0284 (7)0.0259 (7)0.0535 (9)0.0095 (6)0.0099 (6)0.0041 (6)
O2w0.0298 (7)0.0508 (9)0.0441 (8)0.0172 (7)0.0055 (6)0.0079 (7)
O3w0.0484 (11)0.0716 (13)0.0853 (14)0.0055 (10)0.0039 (10)0.0364 (12)
N10.0271 (9)0.0306 (9)0.0439 (10)0.0098 (7)0.0058 (7)0.0062 (7)
N20.0568 (12)0.0311 (10)0.0542 (12)0.0181 (9)0.0102 (10)0.0074 (9)
C10.0279 (10)0.0356 (11)0.0466 (12)0.0125 (9)0.0052 (9)0.0083 (9)
C20.0313 (11)0.0304 (10)0.0420 (11)0.0066 (8)0.0046 (9)0.0052 (9)
C30.0370 (11)0.0311 (10)0.0351 (10)0.0136 (9)0.0125 (8)0.0128 (8)
C40.0459 (13)0.0333 (11)0.0452 (12)0.0163 (10)0.0155 (10)0.0143 (9)
C50.0290 (10)0.0366 (11)0.0551 (13)0.0137 (9)0.0078 (9)0.0122 (10)
C60.0259 (10)0.0324 (11)0.0600 (14)0.0087 (9)0.0037 (9)0.0055 (10)
C70.0359 (11)0.0391 (12)0.0359 (11)0.0149 (9)0.0099 (9)0.0096 (9)
C80.0333 (10)0.0356 (11)0.0309 (10)0.0114 (9)0.0098 (8)0.0083 (8)
C90.0292 (10)0.0386 (12)0.0486 (13)0.0088 (9)0.0053 (9)0.0064 (10)
C100.0316 (11)0.0403 (12)0.0503 (12)0.0154 (9)0.0081 (9)0.0096 (10)
Geometric parameters (Å, º) top
Co1—O1w2.0564 (14)N2—H1n0.9344
Co1—O2w2.1230 (14)N2—H2n0.8988
Co1—N12.1620 (13)C1—C21.378 (3)
Co1—O1wi2.0564 (14)C1—H1A0.9300
Co1—O2wi2.1230 (14)C2—C31.387 (3)
Co1—N1i2.1620 (13)C2—H2A0.9300
O1—C41.233 (3)C3—C51.377 (3)
C7—O21.263 (2)C3—C41.505 (3)
C7—O31.256 (3)C5—C61.373 (3)
O1w—H1w0.8500C5—H5A0.9300
O1w—H2w0.8501C6—H6A0.9300
O2w—H3w0.8675C7—C81.503 (3)
O2w—H4w0.9065C8—C91.385 (3)
O3w—H5w0.9275C8—C10ii1.388 (3)
O3w—H6w0.8733C9—C101.378 (3)
N1—C61.340 (2)C9—H9A0.9300
N1—C11.349 (2)C10—H10A0.9300
N2—C41.335 (2)
O1w—Co1—O1wi180.0N1—C1—H1A118.1
O1w—Co1—O2w89.18 (6)C2—C1—H1A118.1
O1wi—Co1—O2w90.82 (6)C1—C2—C3119.00 (19)
O1w—Co1—O2wi90.82 (6)C1—C2—H2A120.5
O1wi—Co1—O2wi89.18 (6)C3—C2—H2A120.5
O2w—Co1—O2wi180.0C5—C3—C2117.75 (18)
O1w—Co1—N1i90.60 (5)C5—C3—C4117.39 (18)
O1wi—Co1—N1i89.40 (5)C2—C3—C4124.83 (19)
O2w—Co1—N1i86.68 (5)O1—C4—N2123.20 (19)
O2wi—Co1—N1i93.32 (5)O1—C4—C3118.46 (19)
O1w—Co1—N189.40 (5)N2—C4—C3118.34 (18)
O1wi—Co1—N190.60 (5)C6—C5—C3119.68 (19)
O2w—Co1—N193.32 (5)C6—C5—H5A120.2
O2wi—Co1—N186.68 (5)C3—C5—H5A120.2
N1i—Co1—N1180.0N1—C6—C5123.75 (18)
Co1—O1w—H1w120.3N1—C6—H6A118.1
Co1—O1w—H2w119.7C5—C6—H6A118.1
H1w—O1w—H2w120.0O3—C7—O2122.94 (19)
Co1—O2w—H3w110.8O3—C7—C8118.85 (18)
Co1—O2w—H4w135.6O2—C7—C8118.21 (18)
H3w—O2w—H4w113.0C9—C8—C10ii118.56 (19)
H5w—O3w—H6w106.2C9—C8—C7120.97 (18)
C6—N1—C1116.07 (15)C10ii—C8—C7120.45 (19)
C6—N1—Co1120.24 (12)C10—C9—C8121.0 (2)
C1—N1—Co1123.67 (11)C10—C9—H9A119.5
C4—N2—H1n122.5C8—C9—H9A119.5
C4—N2—H2n114.9C9—C10—C8ii120.4 (2)
H1n—N2—H2n122.3C9—C10—H10A119.8
N1—C1—C2123.72 (18)C8ii—C10—H10A119.8
O1w—Co1—N1—C6125.32 (15)C5—C3—C4—N2167.58 (18)
O1wi—Co1—N1—C654.68 (15)C2—C3—C4—N214.5 (3)
O2w—Co1—N1—C636.18 (16)C2—C3—C5—C62.0 (3)
O2wi—Co1—N1—C6143.82 (16)C4—C3—C5—C6179.9 (2)
O1w—Co1—N1—C152.96 (15)C1—N1—C6—C50.3 (3)
O1wi—Co1—N1—C1127.04 (15)Co1—N1—C6—C5178.76 (18)
O2w—Co1—N1—C1142.10 (15)C3—C5—C6—N11.2 (4)
O2wi—Co1—N1—C137.90 (15)O3—C7—C8—C9175.22 (19)
C6—N1—C1—C21.1 (3)O2—C7—C8—C95.7 (3)
Co1—N1—C1—C2179.40 (16)O3—C7—C8—C10ii6.6 (3)
N1—C1—C2—C30.2 (3)O2—C7—C8—C10ii172.5 (2)
C1—C2—C3—C51.4 (3)C10ii—C8—C9—C100.3 (4)
C1—C2—C3—C4179.3 (2)C7—C8—C9—C10177.9 (2)
C5—C3—C4—O112.1 (3)C8—C9—C10—C8ii0.3 (4)
C2—C3—C4—O1165.8 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···O3wiii0.932.002.856 (2)152
O1w—H1w···O1iv0.851.932.676 (2)146
O1w—H2w···O2i0.851.912.664 (2)147
O2w—H3w···O3i0.871.882.746 (2)172
O2w—H4w···O2v0.911.872.757 (2)165
O3w—H5w···O2i0.932.133.041 (3)166
O3w—H6w···O3vi0.871.922.780 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds