organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis(phthalimidometh­yl)acridine

CROSSMARK_Color_square_no_text.svg

aSchool of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, England, and bSchool of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
*Correspondence e-mail: s.j.simpson@exeter.ac.uk

(Received 5 January 2007; accepted 12 January 2007; online 17 January 2007)

The structure of the title symmetrically disubstituted acridine derivative [systematic name: N,N′-(acridine-4,5-diyldimethyl­ene)bis­phthalimide], C31H19N3O4, has been determined at 120 K using synchrotron radiation. The mol­ecule contains a planar acridine and two planar phthalimide fragments. The pseudo-torsion angle N—C⋯C—N between the phthalimido­methyl groups, where C⋯C is an intra­molecular contact between the methyl­ene C atoms, is 95.9 (2)°; the phthalimide rings are almost parallel to each other.

Comment

Certain acridine derivatives have been shown to have immunosuppresive properties (Farr et al., 1965[Farr, R. S., Samuelson, J. S. & Stewart, P. B. (1965). J. Immunol. 94, 682-686.]; Hess & Stewart, 1975[Hess, F. R. & Stewart, P. B. (1975). J. Med. Chem. 18, 320-321.]; Hess et al., 1971[Hess, F., Cullen, E. & Grozinger, K. (1971). Tetrahedron Lett. 12, 2591-2594.]). Recently, acridine derivatives have been shown to exert toxicity towards Plasmodium, Trypanosoma, and Leishmania parasites (Di Giorgio et al., 2005[Di Giorgio, C., De Méo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumenil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560-5568.]). Many of the compounds of inter­est are either 4-substituted or 4,5-disubstituted acridines. The title compound, (I)[link], is a key starting material in the elaboration of the 4- and 5-positions of the acridine nucleus for the synthesis of novel hydrogen-bonding receptors. The single-crystal structure of 4-(phthalimidometh­yl)acridine has been reported (Chiron & Galy, 2003[Chiron, J. & Galy, J.-P. (2003). Heterocycles, 16, 1653-1672.]) and a comparison of the relative arrangement of the planar systems in both this mol­ecule and (I)[link] was deemed to be of inter­est.

[Scheme 1]

The structure of (I)[link], is shown in Fig. 1[link]. The two planar phthalimido groups are almost parallel to each other, the dihedral angle between the mean planes being 5.1 (2)°; these planes are inclined at 80.6 (2) and 81.5 (2)° with respect to the mean plane of the acridine system. The latter angle is 85.6 (2)° for the monosubstituted 4-(phthalimidometh­yl)acridine. The pseudo-torsion angle N2—C14⋯C23—N3 is large [95.9 (2)°], resulting in one phthalimidomethyl group being approximately bis­ected by the plane of the acridine system and the other being nearly perpendicular to it.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was prepared by a modification of the published method (Chiron & Galy, 2003[Chiron, J. & Galy, J.-P. (2003). Heterocycles, 16, 1653-1672.]) and spectroscopic data were in agreement with previous reports (Hess & Stewart, 1975[Hess, F. R. & Stewart, P. B. (1975). J. Med. Chem. 18, 320-321.]). Crystals suitable for diffraction analysis were grown by slow cooling of a dimethyl­sulfoxide solution. Data were collected at the Daresbury SRS station 9.8 using a silicon 111 monochromator.

Crystal data
  • C31H19N3O4

  • Mr = 497.49

  • Orthorhombic, P n a 21

  • a = 40.462 (12) Å

  • b = 4.7732 (14) Å

  • c = 11.719 (4) Å

  • V = 2263.3 (12) Å3

  • Z = 4

  • Dx = 1.460 Mg m−3

  • Synchrotron radiation

  • λ = 0.6905 Å

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.17 × 0.07 × 0.03 mm

Data collection
  • Bruker SMART APEX2 CCD diffractometer

  • fine–slice ω scans

  • Absorption correction: none

  • 15033 measured reflections

  • 3485 independent reflections

  • 3261 reflections with I > 2σ(I)

  • Rint = 0.061

  • θmax = 29.9°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.11

  • 3485 reflections

  • 343 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0613P)2 + 0.0792P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected torsion angles (°)

C4—C5—C14—N2 −114.29 (19)
C6—C5—C14—N2 68.9 (2)
C9—C8—C23—N3 −14.1 (3)
C7—C8—C23—N3 165.48 (16)

H atoms were included in calculated positions, C—H = 0.95–0.99 Å, and refined as riding on their respective C atoms, with Uiso(H) = 1.2 or 1.5 times Ueq(C). In the absence of any significant anomalous scattering, Friedel equivalents were merged prior to the final refinements.

Data collection: APEX2 (Bruker 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97.2. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97.2. University of Göttingen, Germany.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: APEX2 (Bruker 2005); cell refinement: SAINT (Bruker 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

N,N'-(acridine-4,5-diyldimethylene)bisphthalimide top
Crystal data top
C31H19N3O4Dx = 1.460 Mg m3
Mr = 497.49Synchrotron radiation, λ = 0.69050 Å
Orthorhombic, Pna21Cell parameters from 980 reflections
a = 40.462 (12) Åθ = 3.9–28.9°
b = 4.7732 (14) ŵ = 0.10 mm1
c = 11.719 (4) ÅT = 120 K
V = 2263.3 (12) Å3Block, colourless
Z = 40.17 × 0.07 × 0.03 mm
F(000) = 1032
Data collection top
Bruker SMART APEX2 CCD
diffractometer
3261 reflections with I > 2σ(I)
Radiation source: Daresbury SRS station 9.8Rint = 0.061
Silicon 111 monochromatorθmax = 29.9°, θmin = 2.9°
fine–slice ω scansh = 4157
15033 measured reflectionsk = 66
3485 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.0792P]
where P = (Fo2 + 2Fc2)/3
3485 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.83176 (4)0.2925 (3)0.78829 (13)0.0183 (3)
N20.85102 (4)0.0911 (3)1.03501 (14)0.0200 (3)
N30.92241 (4)0.5471 (3)0.63763 (14)0.0215 (3)
O10.81187 (4)0.1257 (3)1.17883 (13)0.0277 (3)
O20.90046 (3)0.1223 (3)0.93583 (13)0.0279 (3)
O30.94365 (4)0.8999 (3)0.75155 (14)0.0338 (4)
O40.91576 (4)0.2316 (3)0.48906 (15)0.0344 (4)
C10.77150 (4)0.2605 (4)0.77479 (14)0.0185 (3)
C20.74203 (4)0.1222 (4)0.81025 (17)0.0223 (4)
H20.72140.17370.77790.027*
C30.74345 (5)0.0844 (4)0.89074 (17)0.0235 (4)
H30.72390.17970.91290.028*
C40.77413 (4)0.1567 (4)0.94126 (16)0.0214 (3)
H40.77460.29780.99840.026*
C50.80312 (4)0.0297 (4)0.91040 (15)0.0186 (3)
C60.80269 (4)0.1822 (4)0.82285 (15)0.0177 (3)
C70.83094 (4)0.4871 (4)0.70479 (15)0.0178 (3)
C80.86188 (4)0.5955 (4)0.66179 (15)0.0197 (3)
C90.86127 (5)0.8028 (4)0.58156 (17)0.0231 (4)
H90.88170.87530.55430.028*
C100.83127 (5)0.9147 (4)0.53718 (18)0.0242 (4)
H100.83191.06200.48270.029*
C110.80172 (5)0.8106 (4)0.57279 (16)0.0222 (4)
H110.78170.88290.54200.027*
C120.80068 (5)0.5924 (4)0.65653 (15)0.0194 (3)
C130.77117 (4)0.4729 (4)0.69289 (16)0.0199 (3)
H130.75080.53570.66200.024*
C140.83526 (5)0.1224 (4)0.96340 (16)0.0209 (3)
H14A0.83110.29121.01030.031*
H14B0.85080.17580.90180.031*
C150.83807 (4)0.1954 (4)1.13738 (16)0.0208 (3)
C160.86271 (5)0.4023 (4)1.17980 (16)0.0213 (4)
C170.86196 (5)0.5752 (4)1.27455 (17)0.0267 (4)
H170.84390.57301.32620.032*
C180.88900 (6)0.7534 (4)1.29110 (19)0.0296 (4)
H180.88920.87681.35470.035*
C190.91561 (5)0.7531 (4)1.2162 (2)0.0301 (4)
H190.93360.87601.22980.036*
C200.91646 (5)0.5767 (4)1.12144 (19)0.0269 (4)
H200.93470.57521.07060.032*
C210.88942 (5)0.4038 (4)1.10482 (16)0.0211 (3)
C220.88282 (4)0.1962 (4)1.01334 (16)0.0211 (3)
C230.89375 (4)0.4725 (4)0.70719 (17)0.0227 (4)
H23A0.89730.53990.78610.034*
H23B0.89170.26590.70990.034*
C240.94534 (5)0.7539 (4)0.66824 (16)0.0228 (4)
C250.97115 (5)0.7509 (4)0.57742 (17)0.0226 (4)
C260.99967 (5)0.9096 (4)0.5676 (2)0.0284 (4)
H261.00571.04330.62390.034*
C271.01919 (5)0.8640 (5)0.4710 (2)0.0322 (5)
H271.03880.97050.46070.039*
C281.01049 (6)0.6664 (5)0.3899 (2)0.0339 (5)
H281.02430.63990.32510.041*
C290.98168 (6)0.5042 (5)0.4015 (2)0.0308 (4)
H290.97570.36750.34630.037*
C300.96241 (5)0.5526 (4)0.49682 (17)0.0232 (4)
C310.93105 (5)0.4174 (4)0.53474 (17)0.0238 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0173 (7)0.0224 (7)0.0153 (6)0.0011 (5)0.0008 (5)0.0004 (5)
N20.0175 (7)0.0252 (7)0.0172 (6)0.0011 (5)0.0007 (6)0.0014 (5)
N30.0169 (7)0.0281 (7)0.0196 (7)0.0044 (6)0.0034 (6)0.0013 (6)
O10.0224 (7)0.0370 (8)0.0237 (7)0.0034 (6)0.0048 (5)0.0017 (6)
O20.0190 (7)0.0426 (9)0.0222 (7)0.0031 (5)0.0017 (5)0.0015 (6)
O30.0277 (8)0.0442 (9)0.0295 (8)0.0079 (6)0.0027 (6)0.0120 (7)
O40.0405 (9)0.0342 (8)0.0284 (7)0.0145 (6)0.0076 (7)0.0072 (6)
C10.0173 (8)0.0214 (8)0.0168 (8)0.0002 (6)0.0002 (6)0.0028 (6)
C20.0153 (8)0.0283 (9)0.0235 (9)0.0003 (6)0.0004 (7)0.0024 (7)
C30.0188 (8)0.0274 (9)0.0244 (9)0.0034 (7)0.0033 (7)0.0010 (7)
C40.0216 (8)0.0241 (8)0.0186 (7)0.0018 (6)0.0022 (7)0.0004 (7)
C50.0184 (8)0.0212 (8)0.0162 (7)0.0005 (6)0.0012 (6)0.0009 (6)
C60.0159 (8)0.0220 (8)0.0153 (7)0.0001 (6)0.0001 (6)0.0022 (6)
C70.0164 (8)0.0205 (8)0.0166 (7)0.0008 (6)0.0002 (6)0.0021 (6)
C80.0172 (8)0.0232 (8)0.0187 (8)0.0029 (6)0.0000 (6)0.0019 (6)
C90.0236 (9)0.0252 (9)0.0204 (8)0.0041 (6)0.0013 (7)0.0006 (7)
C100.0287 (10)0.0230 (9)0.0209 (8)0.0013 (7)0.0003 (7)0.0023 (7)
C110.0254 (9)0.0222 (8)0.0191 (8)0.0021 (6)0.0028 (7)0.0000 (6)
C120.0204 (8)0.0209 (8)0.0168 (7)0.0011 (6)0.0010 (6)0.0018 (6)
C130.0185 (8)0.0240 (9)0.0171 (7)0.0024 (6)0.0018 (6)0.0026 (6)
C140.0208 (8)0.0221 (8)0.0198 (8)0.0008 (6)0.0028 (6)0.0011 (6)
C150.0186 (8)0.0266 (8)0.0171 (8)0.0012 (6)0.0007 (6)0.0009 (6)
C160.0204 (8)0.0248 (9)0.0185 (8)0.0006 (6)0.0027 (7)0.0010 (6)
C170.0284 (10)0.0297 (10)0.0220 (9)0.0016 (7)0.0016 (7)0.0026 (7)
C180.0368 (11)0.0281 (10)0.0237 (9)0.0008 (8)0.0087 (8)0.0025 (7)
C190.0297 (10)0.0290 (10)0.0317 (11)0.0053 (7)0.0097 (8)0.0013 (8)
C200.0217 (9)0.0313 (9)0.0277 (10)0.0024 (7)0.0028 (7)0.0033 (8)
C210.0196 (8)0.0256 (9)0.0182 (8)0.0003 (6)0.0028 (6)0.0013 (6)
C220.0174 (8)0.0271 (9)0.0186 (8)0.0016 (6)0.0025 (6)0.0020 (6)
C230.0168 (8)0.0301 (9)0.0211 (8)0.0024 (7)0.0028 (6)0.0029 (7)
C240.0171 (8)0.0275 (9)0.0239 (9)0.0025 (6)0.0001 (7)0.0003 (7)
C250.0162 (8)0.0261 (9)0.0256 (8)0.0006 (6)0.0013 (7)0.0015 (7)
C260.0175 (8)0.0341 (10)0.0335 (10)0.0039 (7)0.0012 (8)0.0022 (8)
C270.0182 (9)0.0349 (11)0.0436 (12)0.0002 (7)0.0086 (8)0.0088 (9)
C280.0283 (11)0.0344 (11)0.0390 (12)0.0047 (8)0.0178 (9)0.0077 (9)
C290.0329 (11)0.0297 (10)0.0299 (10)0.0007 (8)0.0112 (8)0.0008 (8)
C300.0209 (8)0.0238 (8)0.0247 (9)0.0003 (6)0.0042 (7)0.0022 (7)
C310.0244 (9)0.0254 (9)0.0217 (8)0.0028 (7)0.0033 (7)0.0003 (7)
Geometric parameters (Å, º) top
N1—C71.350 (2)C11—H110.9500
N1—C61.351 (2)C12—C131.390 (3)
N2—C151.401 (2)C13—H130.9500
N2—C221.404 (2)C14—H14A0.9900
N2—C141.466 (2)C14—H14B0.9900
N3—C311.400 (2)C15—C161.489 (3)
N3—C241.401 (2)C16—C171.384 (3)
N3—C231.461 (2)C16—C211.393 (3)
O1—C151.213 (2)C17—C181.399 (3)
O2—C221.208 (2)C17—H170.9500
O3—C241.201 (2)C18—C191.389 (3)
O4—C311.207 (2)C18—H180.9500
C1—C131.396 (3)C19—C201.393 (3)
C1—C21.425 (3)C19—H190.9500
C1—C61.432 (2)C20—C211.384 (3)
C2—C31.366 (3)C20—H200.9500
C2—H20.9500C21—C221.484 (3)
C3—C41.418 (3)C23—H23A0.9900
C3—H30.9500C23—H23B0.9900
C4—C51.369 (2)C24—C251.491 (3)
C4—H40.9500C25—C301.383 (3)
C5—C61.441 (2)C25—C261.385 (3)
C5—C141.507 (3)C26—C271.398 (3)
C7—C121.439 (2)C26—H260.9500
C7—C81.446 (2)C27—C281.384 (4)
C8—C91.365 (3)C27—H270.9500
C8—C231.513 (3)C28—C291.406 (3)
C9—C101.425 (3)C28—H280.9500
C9—H90.9500C29—C301.382 (3)
C10—C111.360 (3)C29—H290.9500
C10—H100.9500C30—C311.491 (3)
C11—C121.432 (3)
C7—N1—C6117.65 (15)O1—C15—C16129.32 (18)
C15—N2—C22111.76 (16)N2—C15—C16105.73 (16)
C15—N2—C14125.08 (16)C17—C16—C21121.34 (18)
C22—N2—C14122.92 (16)C17—C16—C15130.45 (18)
C31—N3—C24111.51 (15)C21—C16—C15108.21 (16)
C31—N3—C23124.81 (17)C16—C17—C18117.2 (2)
C24—N3—C23123.65 (16)C16—C17—H17121.4
C13—C1—C2121.95 (17)C18—C17—H17121.4
C13—C1—C6117.93 (16)C19—C18—C17121.17 (19)
C2—C1—C6120.12 (16)C19—C18—H18119.4
C3—C2—C1120.07 (17)C17—C18—H18119.4
C3—C2—H2120.0C18—C19—C20121.55 (19)
C1—C2—H2120.0C18—C19—H19119.2
C2—C3—C4120.05 (17)C20—C19—H19119.2
C2—C3—H3120.0C21—C20—C19116.92 (19)
C4—C3—H3120.0C21—C20—H20121.5
C5—C4—C3122.16 (17)C19—C20—H20121.5
C5—C4—H4118.9C20—C21—C16121.85 (18)
C3—C4—H4118.9C20—C21—C22129.94 (18)
C4—C5—C6119.23 (16)C16—C21—C22108.21 (16)
C4—C5—C14120.04 (16)O2—C22—N2124.97 (18)
C6—C5—C14120.65 (15)O2—C22—C21129.18 (18)
N1—C6—C1123.22 (16)N2—C22—C21105.84 (15)
N1—C6—C5118.46 (15)N3—C23—C8112.66 (16)
C1—C6—C5118.30 (15)N3—C23—H23A109.1
N1—C7—C12123.11 (16)C8—C23—H23A109.1
N1—C7—C8118.53 (16)N3—C23—H23B109.1
C12—C7—C8118.36 (16)C8—C23—H23B109.1
C9—C8—C7118.93 (17)H23A—C23—H23B107.8
C9—C8—C23122.60 (17)O3—C24—N3125.37 (18)
C7—C8—C23118.47 (16)O3—C24—C25128.72 (18)
C8—C9—C10122.59 (17)N3—C24—C25105.91 (16)
C8—C9—H9118.7C30—C25—C26122.03 (19)
C10—C9—H9118.7C30—C25—C24108.37 (16)
C11—C10—C9120.00 (18)C26—C25—C24129.61 (19)
C11—C10—H10120.0C25—C26—C27116.9 (2)
C9—C10—H10120.0C25—C26—H26121.5
C10—C11—C12120.12 (17)C27—C26—H26121.5
C10—C11—H11119.9C28—C27—C26121.24 (19)
C12—C11—H11119.9C28—C27—H27119.4
C13—C12—C11122.27 (17)C26—C27—H27119.4
C13—C12—C7117.83 (16)C27—C28—C29121.3 (2)
C11—C12—C7119.89 (16)C27—C28—H28119.3
C12—C13—C1120.04 (16)C29—C28—H28119.3
C12—C13—H13120.0C30—C29—C28117.0 (2)
C1—C13—H13120.0C30—C29—H29121.5
N2—C14—C5114.04 (15)C28—C29—H29121.5
N2—C14—H14A108.7C29—C30—C25121.50 (18)
C5—C14—H14A108.7C29—C30—C31130.43 (19)
N2—C14—H14B108.7C25—C30—C31108.06 (17)
C5—C14—H14B108.7O4—C31—N3125.39 (19)
H14A—C14—H14B107.6O4—C31—C30128.47 (19)
O1—C15—N2124.94 (18)N3—C31—C30106.13 (16)
C13—C1—C2—C3179.93 (17)C15—C16—C17—C18178.88 (19)
C6—C1—C2—C30.4 (3)C16—C17—C18—C190.8 (3)
C1—C2—C3—C41.6 (3)C17—C18—C19—C200.2 (3)
C2—C3—C4—C51.4 (3)C18—C19—C20—C210.6 (3)
C3—C4—C5—C60.7 (3)C19—C20—C21—C160.9 (3)
C3—C4—C5—C14177.57 (17)C19—C20—C21—C22179.74 (19)
C7—N1—C6—C10.4 (3)C17—C16—C21—C200.2 (3)
C7—N1—C6—C5178.85 (16)C15—C16—C21—C20179.83 (18)
C13—C1—C6—N13.8 (3)C17—C16—C21—C22179.75 (17)
C2—C1—C6—N1175.88 (17)C15—C16—C21—C220.6 (2)
C13—C1—C6—C5177.80 (16)C15—N2—C22—O2173.75 (18)
C2—C1—C6—C52.5 (2)C14—N2—C22—O20.8 (3)
C4—C5—C6—N1175.82 (17)C15—N2—C22—C215.2 (2)
C14—C5—C6—N11.0 (2)C14—N2—C22—C21179.70 (15)
C4—C5—C6—C12.7 (3)C20—C21—C22—O24.1 (3)
C14—C5—C6—C1179.48 (16)C16—C21—C22—O2175.39 (19)
C6—N1—C7—C123.7 (3)C20—C21—C22—N2177.08 (19)
C6—N1—C7—C8176.34 (16)C16—C21—C22—N23.4 (2)
N1—C7—C8—C9176.64 (17)C31—N3—C23—C879.5 (2)
C12—C7—C8—C93.3 (3)C24—N3—C23—C8102.6 (2)
N1—C7—C8—C233.8 (2)C9—C8—C23—N314.1 (3)
C12—C7—C8—C23176.31 (15)C7—C8—C23—N3165.48 (16)
C7—C8—C9—C100.8 (3)C31—N3—C24—O3178.9 (2)
C23—C8—C9—C10178.72 (19)C23—N3—C24—O33.0 (3)
C8—C9—C10—C111.5 (3)C31—N3—C24—C251.1 (2)
C9—C10—C11—C121.2 (3)C23—N3—C24—C25177.07 (17)
C10—C11—C12—C13177.84 (18)O3—C24—C25—C30178.5 (2)
C10—C11—C12—C71.3 (3)N3—C24—C25—C301.5 (2)
N1—C7—C12—C134.4 (3)O3—C24—C25—C261.5 (4)
C8—C7—C12—C13175.64 (16)N3—C24—C25—C26178.6 (2)
N1—C7—C12—C11176.39 (16)C30—C25—C26—C271.0 (3)
C8—C7—C12—C113.5 (2)C24—C25—C26—C27178.97 (19)
C11—C12—C13—C1179.99 (16)C25—C26—C27—C280.8 (3)
C7—C12—C13—C10.8 (3)C26—C27—C28—C290.1 (3)
C2—C1—C13—C12176.71 (17)C27—C28—C29—C300.5 (3)
C6—C1—C13—C122.9 (3)C28—C29—C30—C250.2 (3)
C15—N2—C14—C565.6 (2)C28—C29—C30—C31179.4 (2)
C22—N2—C14—C5120.55 (18)C26—C25—C30—C290.5 (3)
C4—C5—C14—N2114.29 (19)C24—C25—C30—C29179.48 (19)
C6—C5—C14—N268.9 (2)C26—C25—C30—C31178.77 (18)
C22—N2—C15—O1175.73 (18)C24—C25—C30—C311.2 (2)
C14—N2—C15—O11.3 (3)C24—N3—C31—O4179.6 (2)
C22—N2—C15—C164.8 (2)C23—N3—C31—O41.5 (3)
C14—N2—C15—C16179.16 (16)C24—N3—C31—C300.4 (2)
O1—C15—C16—C172.3 (3)C23—N3—C31—C30177.78 (17)
N2—C15—C16—C17177.15 (19)C29—C30—C31—O40.6 (4)
O1—C15—C16—C21178.12 (19)C25—C30—C31—O4178.6 (2)
N2—C15—C16—C212.4 (2)C29—C30—C31—N3179.8 (2)
C21—C16—C17—C180.6 (3)C25—C30—C31—N30.6 (2)
 

Acknowledgements

We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury. The EPSRC National Crystallography Service is thanked for performing the data collection at Daresbury.

References

First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiron, J. & Galy, J.-P. (2003). Heterocycles, 16, 1653–1672.  CrossRef Google Scholar
First citationDi Giorgio, C., De Méo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumenil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560–5568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarr, R. S., Samuelson, J. S. & Stewart, P. B. (1965). J. Immunol. 94, 682–686.  PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHess, F., Cullen, E. & Grozinger, K. (1971). Tetrahedron Lett. 12, 2591–2594.  CrossRef Google Scholar
First citationHess, F. R. & Stewart, P. B. (1975). J. Med. Chem. 18, 320–321.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97.2. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds