metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(O,O′-di­ethyl di­thio­phosphato-κ2S,S′)zinc(II)]-μ-1,2-di-4-pyridylethane-κ2N:N′]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 8 February 2007; accepted 13 February 2007; online 21 February 2007)

In the zigzag polymeric title compound, [Zn(S2P(OEt)2)2(NC5H4CH)2CH2C5H4N)]n or [Zn(C4H10O2PS2)2(C12H12N2)]n, the Zn atom adopts a distorted tetra­hedral ZnN2S2 geometry; the bridging di-4-pyridylethane mol­ecules are each disposed about a centre of inversion.

Comment

Previous work on structures related to the title compound, [Zn(S2P(OR)2)2(NC5H4CH2CH2C5H4N)]n, (I)[link], has shown that when R = iPr and Cy (Lai et al., 2004a[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004a). CrystEngComm, 6, 221-226.]), zigzag polymeric chains are found. By contrast, increasing the bulk of R to iBu, results in the formation of a straight chain (Lai et al., 2004b[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004b). Acta Cryst. E60, m1005-m1007.]).

[Scheme 1]

The asymmetric unit in (I)[link] comprises Zn[S2P(OEt)2]2 and half each of two 1,2-di-4-pyridylethane ligands, as each of these is disposed about an inversion centre. The coordination geometry (Fig. 1[link]) is distorted tetra­hedral, with both dithio­phosphate ligands coordinating in the monodentate mode. This is substanti­ated by the relatively narrow range of tetra­hedral angles and the disparity in the P—S bond distances (Table 1[link]). In keeping with expecta­tion (Chen et al., 2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]), the topology of the polymeric chain formed in (I)[link] is zigzag (Fig. 2[link]). Chains are linked via C—H⋯S inter­actions (details in Table 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-labelling scheme. Only the major component of the disorder is shown. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms).
[Figure 2]
Figure 2
View of the linear polymer in (I)[link]. Colour code: Zn brown, S yellow, P pink, O red, N blue, C grey and H green.

Experimental

The title compound was prepared by refluxing the parent zinc dithio­phosphate with 1,2-di-4-pyridylethane according to a literature procedure (Lai et al., 2004a[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004a). CrystEngComm, 6, 221-226.]). Colourless crystals of (I)[link] were isolated by the slow evaporation of an acetonitrile/CHCl3 (1:3) solution (m.p. 389–391 K).

Crystal data
  • [Zn(C4H10O2PS2)2(C12H12N2)]

  • Mr = 620.03

  • Monoclinic, P 21 /c

  • a = 11.6895 (2) Å

  • b = 16.9503 (4) Å

  • c = 14.6979 (3) Å

  • β = 103.599 (1)°

  • V = 2830.6 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 120 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker–Nonius 95mm KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 1 (expected range = 0.639–0.770)

  • 41164 measured reflections

  • 6173 independent reflections

  • 4828 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.142

  • S = 1.10

  • 6173 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—S1 2.3211 (9)
Zn—S3 2.3228 (9)
Zn—N1 2.048 (2)
Zn—N2 2.071 (3)
S1—P1 2.0153 (12)
S2—P1 1.9437 (12)
S3—P2 2.0174 (13)
S4—P2 1.9303 (16)
S1—Zn—S3 119.67 (3)
S1—Zn—N1 110.85 (8)
S1—Zn—N2 112.14 (8)
S3—Zn—N1 114.64 (8)
S3—Zn—N2 98.95 (7)
N1—Zn—N2 97.59 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5a⋯S4i 0.99 2.80 3.770 (5) 165
C18—H18⋯S1ii 0.95 2.87 3.805 (3) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Disorder was modelled for the O4 ethyl group in that two positions were resolved for the atoms O4 and C7 [occupancy of the major component = 0.662 (9)] but not for the other atoms of this group. The atoms of the minor component were refined isotropically. The maximum and minimum residual electron-density peaks are located 0.96 and 0.78 Å, respectively, from atoms C14 and S4.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Previous work on structures related to the title compound, [Zn(S2P(OR)2)2(NC5H4CH2CH2C5H4N)]n, (I), has shown that when R = iPr and Cy (Lai et al., 2004a), zigzag polymeric chains are found. By contrast, increasing the bulk of R to iBu, results in the formation of a straight chain (Lai et al., 2004b).

The asymmetric unit in (I) comprises Zn[S2P(OEt)2]2 and two halves of 1,2-di-4-pyridylethane, as each of these is disposed about an inversion centre. The coordination geometry (Fig. 1) is distorted tetrahedal, with both dithiophosphate ligands coordinating in the monodentate mode. This is substantiated by the relatively narrow range of tetrahedral angles and the disparity in the P—S bond distances (Table 1). In keeping with expectation (Chen et al., 2006), the topology of the polymeric chain formed in (I) is zigzag (Fig. 2). Chains are linked via C—H···S interactions (details in Table 2).

Experimental top

The title compound was prepared by refluxing the parent zinc dithiophosphate with 1,2-di-4-pyridylethane according to a literature procedure (Lai et al., 2004a). Colourless crystals of (I) were isolated by the slow evaporation of an acetonitrile/CHCl3 (1:3) solution (m.p. 389–391 K).

Refinement top

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Disorder was modelled for the O4 ethyl group in that two positions were resolved for the O4 and C7 atoms [occupancy of the major component = 0.662 (9)] but not for the other atoms of this group. The atoms of the minor component were refined isotropically. The maximum residual electron-density peaks are located 0.96 and 0.78 Å, respectively, from atoms C14 and S4.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Only the major component of the disorder is shown. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of the linear polymer in (I). Colour code: Zn brown, S yellow, P pink, O red, N blue, C grey and H green.
catena-Poly[[bis(O,O'-diethyl dithiophosphato-κ2S,S')zinc(II)]-µ-1,2- di-4-pyridylethane-κ2N:N'] top
Crystal data top
[Zn(C4H10O2PS2)2(C12H12N2)]F(000) = 1288
Mr = 620.03Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 6612 reflections
a = 11.6895 (2) Åθ = 1.0–27.5°
b = 16.9503 (4) ŵ = 1.30 mm1
c = 14.6979 (3) ÅT = 120 K
β = 103.599 (1)°Block, colourless
V = 2830.6 (1) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6173 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9.091 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2021
Tmin = 0.829, Tmax = 1l = 1818
41164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0866P)2 + 1.3066P]
where P = (Fo2 + 2Fc2)/3
6173 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.00 e Å3
9 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Zn(C4H10O2PS2)2(C12H12N2)]V = 2830.6 (1) Å3
Mr = 620.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6895 (2) ŵ = 1.30 mm1
b = 16.9503 (4) ÅT = 120 K
c = 14.6979 (3) Å0.25 × 0.25 × 0.20 mm
β = 103.599 (1)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4828 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1Rint = 0.043
41164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0429 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.10Δρmax = 1.00 e Å3
6173 reflectionsΔρmin = 1.27 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn0.20747 (3)0.19424 (2)0.27185 (2)0.02651 (13)
S10.03650 (7)0.12678 (5)0.27755 (5)0.0330 (2)
S20.22485 (8)0.09117 (5)0.13540 (6)0.0393 (2)
S30.32373 (9)0.24764 (5)0.40808 (6)0.0388 (2)
S40.32107 (11)0.05103 (6)0.41255 (7)0.0522 (3)
P10.07909 (7)0.15089 (5)0.15571 (6)0.0293 (2)
O10.0056 (2)0.13769 (14)0.07833 (15)0.0347 (5)
O20.1019 (2)0.24322 (13)0.14423 (17)0.0362 (5)
O30.4127 (2)0.15756 (17)0.57328 (18)0.0466 (6)
N10.2989 (2)0.13575 (15)0.18959 (17)0.0268 (5)
N20.1731 (2)0.29633 (14)0.19270 (17)0.0263 (5)
C10.0597 (4)0.1493 (3)0.0199 (3)0.0517 (10)
H1A0.06520.20630.03490.062*
H1B0.14010.12680.03530.062*
C20.0156 (5)0.1085 (4)0.0748 (3)0.0812 (17)
H2A0.01880.11540.14190.122*
H2B0.02000.05210.05960.122*
H2C0.09490.13120.05900.122*
C30.1762 (4)0.2814 (2)0.1971 (4)0.0571 (12)
H3A0.14190.27530.26500.069*
H3B0.25540.25690.18220.069*
C40.1854 (4)0.3668 (2)0.1715 (3)0.0528 (10)
H4A0.23540.39370.20670.079*
H4B0.22000.37230.10430.079*
H4C0.10680.39060.18660.079*
C50.4511 (4)0.0905 (3)0.6350 (3)0.0589 (11)
H5A0.51310.06100.61370.071*
H5B0.38400.05450.63320.071*
C60.4982 (4)0.1195 (3)0.7326 (3)0.0708 (15)
H6A0.52440.07450.77420.106*
H6B0.43620.14810.75370.106*
H6C0.56480.15490.73410.106*
P20.39999 (9)0.14657 (6)0.46451 (7)0.0436 (3)0.662 (9)
O40.5421 (3)0.1528 (2)0.4746 (3)0.0408 (13)0.662 (9)
C70.5930 (5)0.1253 (4)0.3991 (4)0.057 (2)0.662 (9)
H7A0.53170.12410.33980.069*0.662 (9)
H7B0.62370.07100.41270.069*0.662 (9)
C80.6886 (5)0.1779 (4)0.3894 (5)0.109 (2)0.662 (9)
H8A0.72230.15940.33820.163*0.662 (9)
H8B0.74960.17830.44790.163*0.662 (9)
H8C0.65770.23150.37550.163*0.662 (9)
P220.39999 (9)0.14657 (6)0.46451 (7)0.0436 (3)0.338 (9)
O240.5095 (6)0.1304 (5)0.4224 (6)0.047 (3)*0.338 (9)
C270.5977 (9)0.1927 (7)0.4438 (9)0.067 (4)*0.338 (9)
H27A0.56030.24480.42680.081*0.338 (9)
H27B0.63490.19300.51170.081*0.338 (9)
C280.6886 (5)0.1779 (4)0.3894 (5)0.109 (2)0.338 (9)
H28A0.75040.21810.40520.163*0.338 (9)
H28B0.65180.18050.32220.163*0.338 (9)
H28C0.72310.12550.40490.163*0.338 (9)
C90.3959 (3)0.1690 (2)0.1721 (3)0.0395 (8)
H90.42470.21650.20380.047*
C100.4552 (3)0.1374 (2)0.1106 (3)0.0412 (8)
H100.52580.16150.10310.049*
C110.4139 (3)0.0725 (2)0.0606 (2)0.0369 (8)
C120.3157 (3)0.0362 (2)0.0806 (3)0.0478 (10)
H120.28630.01150.05000.057*
C130.2607 (3)0.0698 (2)0.1452 (2)0.0377 (8)
H130.19360.04450.15780.045*
C140.4725 (3)0.0394 (2)0.0142 (2)0.0407 (8)
H14A0.41290.03410.07410.049*
H14B0.53360.07670.02410.049*
C150.1647 (3)0.36711 (19)0.2319 (2)0.0324 (7)
H150.18270.37070.29830.039*
C160.1316 (3)0.43427 (19)0.1806 (2)0.0361 (7)
H160.12610.48290.21130.043*
C170.1059 (3)0.43093 (19)0.0834 (2)0.0333 (7)
C180.1170 (3)0.35852 (19)0.0433 (2)0.0338 (7)
H180.10170.35380.02290.041*
C190.1501 (3)0.29310 (18)0.0989 (2)0.0302 (7)
H190.15690.24390.06980.036*
C200.0656 (3)0.50259 (19)0.0234 (3)0.0399 (8)
H20A0.11120.50680.02530.048*
H20B0.08080.55070.06270.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0355 (2)0.0271 (2)0.0220 (2)0.00067 (14)0.01688 (15)0.00188 (13)
S10.0391 (4)0.0375 (4)0.0258 (4)0.0057 (3)0.0145 (3)0.0035 (3)
S20.0375 (5)0.0428 (5)0.0396 (5)0.0072 (4)0.0135 (4)0.0051 (4)
S30.0566 (6)0.0371 (5)0.0222 (4)0.0061 (4)0.0082 (4)0.0010 (3)
S40.0826 (8)0.0403 (5)0.0395 (5)0.0165 (5)0.0262 (5)0.0029 (4)
P10.0357 (4)0.0305 (4)0.0262 (4)0.0003 (3)0.0163 (3)0.0015 (3)
O10.0380 (12)0.0469 (14)0.0230 (11)0.0018 (10)0.0147 (9)0.0022 (10)
O20.0428 (13)0.0325 (12)0.0406 (13)0.0044 (10)0.0243 (11)0.0069 (10)
O30.0436 (14)0.0600 (17)0.0353 (14)0.0048 (12)0.0074 (11)0.0085 (12)
N10.0291 (13)0.0338 (14)0.0204 (12)0.0043 (11)0.0117 (10)0.0019 (11)
N20.0338 (14)0.0257 (13)0.0238 (13)0.0004 (10)0.0153 (11)0.0012 (10)
C10.050 (2)0.082 (3)0.0254 (18)0.003 (2)0.0140 (16)0.0022 (18)
C20.081 (3)0.134 (5)0.034 (2)0.010 (3)0.026 (2)0.024 (3)
C30.074 (3)0.0337 (19)0.083 (3)0.004 (2)0.057 (3)0.002 (2)
C40.059 (2)0.038 (2)0.067 (3)0.0092 (18)0.027 (2)0.0043 (19)
C50.057 (3)0.063 (3)0.057 (3)0.017 (2)0.015 (2)0.019 (2)
C60.066 (3)0.104 (4)0.045 (2)0.034 (3)0.019 (2)0.030 (3)
P20.0482 (6)0.0490 (6)0.0410 (5)0.0148 (4)0.0257 (4)0.0104 (4)
O40.034 (2)0.057 (3)0.035 (2)0.0022 (17)0.0145 (17)0.0093 (19)
C70.045 (4)0.081 (5)0.054 (4)0.010 (3)0.030 (3)0.020 (3)
C80.068 (4)0.164 (7)0.111 (5)0.029 (4)0.055 (4)0.015 (5)
P220.0482 (6)0.0490 (6)0.0410 (5)0.0148 (4)0.0257 (4)0.0104 (4)
C280.068 (4)0.164 (7)0.111 (5)0.029 (4)0.055 (4)0.015 (5)
C90.0382 (19)0.0454 (19)0.0382 (19)0.0023 (16)0.0157 (15)0.0122 (16)
C100.0310 (17)0.058 (2)0.039 (2)0.0016 (16)0.0167 (15)0.0103 (17)
C110.0301 (16)0.049 (2)0.0333 (17)0.0065 (15)0.0121 (13)0.0052 (15)
C120.0390 (19)0.050 (2)0.060 (2)0.0027 (17)0.0230 (17)0.0300 (19)
C130.0323 (17)0.0388 (18)0.047 (2)0.0004 (14)0.0199 (15)0.0124 (16)
C140.043 (2)0.047 (2)0.0345 (18)0.0038 (16)0.0134 (15)0.0007 (15)
C150.0429 (18)0.0309 (16)0.0283 (16)0.0003 (14)0.0183 (14)0.0055 (13)
C160.048 (2)0.0256 (16)0.0391 (18)0.0011 (14)0.0205 (15)0.0053 (14)
C170.0430 (18)0.0261 (15)0.0379 (18)0.0003 (14)0.0237 (15)0.0047 (14)
C180.049 (2)0.0311 (16)0.0271 (16)0.0013 (14)0.0210 (15)0.0019 (13)
C190.0447 (18)0.0249 (15)0.0261 (16)0.0005 (13)0.0185 (14)0.0013 (12)
C200.059 (2)0.0260 (16)0.043 (2)0.0023 (16)0.0290 (17)0.0068 (14)
Geometric parameters (Å, º) top
Zn—S12.3211 (9)C7—C81.463 (4)
Zn—S32.3228 (9)C7—H7A0.9900
Zn—N12.048 (2)C7—H7B0.9900
Zn—N22.071 (3)C8—H8A0.9800
S1—P12.0153 (12)C8—H8B0.9800
S2—P11.9437 (12)C8—H8C0.9800
S3—P22.0174 (13)P22—O241.571 (3)
S4—P21.9303 (16)O24—C271.458 (4)
P1—O11.594 (2)C27—C281.493 (4)
P1—O21.590 (2)C27—H27A0.9900
O1—C11.447 (4)C27—H27B0.9900
O2—C31.447 (4)C28—H28A0.9800
O3—C51.457 (5)C28—H28B0.9800
O3—P221.581 (3)C28—H28C0.9800
O3—P21.581 (3)C9—C101.371 (5)
N1—C131.318 (4)C9—H90.9500
N1—C91.345 (4)C10—C111.348 (5)
N2—C191.342 (4)C10—H100.9500
N2—C151.344 (4)C11—C121.393 (5)
C1—C21.497 (6)C11—C141.532 (5)
C1—H1A0.9900C12—C131.387 (5)
C1—H1B0.9900C12—H120.9500
C2—H2A0.9800C13—H130.9500
C2—H2B0.9800C14—C14i1.498 (7)
C2—H2C0.9800C14—H14A0.9900
C3—C41.494 (5)C14—H14B0.9900
C3—H3A0.9900C15—C161.370 (5)
C3—H3B0.9900C15—H150.9500
C4—H4A0.9800C16—C171.390 (5)
C4—H4B0.9800C16—H160.9500
C4—H4C0.9800C17—C181.381 (4)
C5—C61.494 (6)C17—C201.510 (5)
C5—H5A0.9900C18—C191.378 (4)
C5—H5B0.9900C18—H180.9500
C6—H6A0.9800C19—H190.9500
C6—H6B0.9800C20—C20ii1.529 (8)
C6—H6C0.9800C20—H20A0.9900
P2—O41.636 (3)C20—H20B0.9900
O4—C71.454 (4)
S1—Zn—S3119.67 (3)O4—C7—H7B109.7
S1—Zn—N1110.85 (8)C8—C7—H7B109.7
S1—Zn—N2112.14 (8)H7A—C7—H7B108.2
S3—Zn—N1114.64 (8)C7—C8—H8A109.5
S3—Zn—N298.95 (7)C7—C8—H8B109.5
N1—Zn—N297.59 (10)H8A—C8—H8B109.5
Zn—S1—P1105.73 (4)C7—C8—H8C109.5
P2—S3—Zn97.81 (5)H8A—C8—H8C109.5
O1—P1—O299.63 (12)H8B—C8—H8C109.5
O1—P1—S2114.67 (10)O24—P22—O3121.8 (4)
O2—P1—S2112.18 (10)O24—P22—S493.2 (3)
O1—P1—S1104.14 (10)O3—P22—S4114.93 (12)
O2—P1—S1110.76 (10)O24—P22—S3107.9 (3)
S2—P1—S1114.28 (5)O3—P22—S3104.07 (11)
C1—O1—P1120.7 (2)S4—P22—S3115.21 (7)
C3—O2—P1119.3 (2)P22—O24—C27112.9 (5)
C5—O3—P22118.7 (3)C28—C27—O24108.6 (5)
C5—O3—P2118.7 (3)C28—C27—H27A110.0
C13—N1—C9117.6 (3)O24—C27—H27A110.0
C13—N1—Zn122.7 (2)C28—C27—H27B110.0
C9—N1—Zn119.4 (2)O24—C27—H27B110.0
C19—N2—C15117.4 (3)H27A—C27—H27B108.4
C19—N2—Zn120.6 (2)C27—C28—H28A109.5
C15—N2—Zn121.9 (2)C27—C28—H28B109.5
O1—C1—C2107.5 (4)H28A—C28—H28B109.5
O1—C1—H1A110.2C27—C28—H28C109.5
C2—C1—H1A110.2H28A—C28—H28C109.5
O1—C1—H1B110.2H28B—C28—H28C109.5
C2—C1—H1B110.2N1—C9—C10122.8 (3)
H1A—C1—H1B108.5N1—C9—H9118.6
C1—C2—H2A109.5C10—C9—H9118.6
C1—C2—H2B109.5C11—C10—C9120.4 (3)
H2A—C2—H2B109.5C11—C10—H10119.8
C1—C2—H2C109.5C9—C10—H10119.8
H2A—C2—H2C109.5C10—C11—C12116.9 (3)
H2B—C2—H2C109.5C10—C11—C14121.8 (3)
O2—C3—C4108.3 (3)C12—C11—C14121.3 (3)
O2—C3—H3A110.0C13—C12—C11120.1 (3)
C4—C3—H3A110.0C13—C12—H12120.0
O2—C3—H3B110.0C11—C12—H12120.0
C4—C3—H3B110.0N1—C13—C12122.0 (3)
H3A—C3—H3B108.4N1—C13—H13119.0
C3—C4—H4A109.5C12—C13—H13119.0
C3—C4—H4B109.5C14i—C14—C11111.2 (4)
H4A—C4—H4B109.5C14i—C14—H14A109.4
C3—C4—H4C109.5C11—C14—H14A109.4
H4A—C4—H4C109.5C14i—C14—H14B109.4
H4B—C4—H4C109.5C11—C14—H14B109.4
O3—C5—C6109.4 (4)H14A—C14—H14B108.0
O3—C5—H5A109.8N2—C15—C16123.0 (3)
C6—C5—H5A109.8N2—C15—H15118.5
O3—C5—H5B109.8C16—C15—H15118.5
C6—C5—H5B109.8C15—C16—C17119.8 (3)
H5A—C5—H5B108.2C15—C16—H16120.1
C5—C6—H6A109.5C17—C16—H16120.1
C5—C6—H6B109.5C18—C17—C16117.1 (3)
H6A—C6—H6B109.5C18—C17—C20120.9 (3)
C5—C6—H6C109.5C16—C17—C20122.0 (3)
H6A—C6—H6C109.5C19—C18—C17120.2 (3)
H6B—C6—H6C109.5C19—C18—H18119.9
O3—P2—O492.76 (17)C17—C18—H18119.9
O3—P2—S4114.93 (12)N2—C19—C18122.5 (3)
O4—P2—S4118.09 (15)N2—C19—H19118.8
O3—P2—S3104.07 (11)C18—C19—H19118.8
O4—P2—S3108.87 (16)C17—C20—C20ii111.0 (3)
S4—P2—S3115.21 (7)C17—C20—H20A109.4
C7—O4—P2119.9 (3)C20ii—C20—H20A109.4
O4—C7—C8109.7 (4)C17—C20—H20B109.4
O4—C7—H7A109.7C20ii—C20—H20B109.4
C8—C7—H7A109.7H20A—C20—H20B108.0
N1—Zn—S1—P177.86 (9)Zn—S3—P2—S417.64 (7)
N2—Zn—S1—P130.06 (9)O3—P2—O4—C7162.9 (4)
S3—Zn—S1—P1145.21 (4)S4—P2—O4—C742.6 (5)
N1—Zn—S3—P2258.80 (9)S3—P2—O4—C791.3 (4)
N2—Zn—S3—P22161.47 (8)P2—O4—C7—C8142.2 (5)
S1—Zn—S3—P2276.60 (5)C5—O3—P22—O2466.0 (5)
N1—Zn—S3—P258.80 (9)P2—O3—P22—O240 (100)
N2—Zn—S3—P2161.47 (8)C5—O3—P22—S445.1 (3)
S1—Zn—S3—P276.60 (5)P2—O3—P22—S40 (28)
Zn—S1—P1—O147.05 (10)C5—O3—P22—S3172.1 (3)
Zn—S1—P1—O259.21 (10)P2—O3—P22—S30 (100)
Zn—S1—P1—S2172.92 (5)P2—S4—P22—O240 (100)
O2—P1—O1—C165.8 (3)P2—S4—P22—O30 (29)
S2—P1—O1—C154.2 (3)P2—S4—P22—S30 (45)
S1—P1—O1—C1179.8 (3)P2—S3—P22—O240 (68)
O1—P1—O2—C3174.8 (3)Zn—S3—P22—O2484.9 (4)
S2—P1—O2—C353.0 (3)P2—S3—P22—O30 (43)
S1—P1—O2—C376.0 (3)Zn—S3—P22—O3144.39 (11)
N2—Zn—N1—C13115.6 (3)P2—S3—P22—S40 (14)
S3—Zn—N1—C13140.9 (2)Zn—S3—P22—S417.64 (7)
S1—Zn—N1—C131.6 (3)O3—P22—O24—C2759.0 (9)
N2—Zn—N1—C957.7 (3)S4—P22—O24—C27178.9 (8)
S3—Zn—N1—C945.8 (3)S3—P22—O24—C2761.1 (9)
S1—Zn—N1—C9175.0 (2)P22—O24—C27—C28171.7 (8)
N1—Zn—N2—C1936.4 (3)C13—N1—C9—C100.3 (5)
S3—Zn—N2—C19152.9 (2)Zn—N1—C9—C10173.4 (3)
S1—Zn—N2—C1979.8 (2)N1—C9—C10—C113.4 (6)
N1—Zn—N2—C15148.3 (2)C9—C10—C11—C125.3 (6)
S3—Zn—N2—C1531.8 (3)C9—C10—C11—C14175.2 (3)
S1—Zn—N2—C1595.5 (2)C10—C11—C12—C133.9 (6)
P1—O1—C1—C2162.1 (3)C14—C11—C12—C13176.6 (3)
P1—O2—C3—C4178.5 (3)C9—N1—C13—C121.8 (5)
P22—O3—C5—C6159.7 (3)Zn—N1—C13—C12171.7 (3)
P2—O3—C5—C6159.7 (3)C11—C12—C13—N10.3 (6)
C5—O3—P2—O477.7 (3)C10—C11—C14—C14i113.1 (5)
P22—O3—P2—O40 (100)C12—C11—C14—C14i66.4 (5)
C5—O3—P2—S445.1 (3)C19—N2—C15—C161.6 (5)
P22—O3—P2—S40 (28)Zn—N2—C15—C16173.8 (3)
C5—O3—P2—S3172.1 (3)N2—C15—C16—C170.6 (5)
P22—O3—P2—S30 (100)C15—C16—C17—C180.8 (5)
P22—S4—P2—O30 (29)C15—C16—C17—C20178.3 (3)
P22—S4—P2—O40 (95)C16—C17—C18—C191.2 (5)
P22—S4—P2—S30 (45)C20—C17—C18—C19177.9 (3)
P22—S3—P2—O30 (43)C15—N2—C19—C181.2 (5)
Zn—S3—P2—O3144.39 (11)Zn—N2—C19—C18174.3 (3)
P22—S3—P2—O40 (69)C17—C18—C19—N20.2 (5)
Zn—S3—P2—O4117.67 (15)C18—C17—C20—C20ii72.4 (5)
P22—S3—P2—S40 (14)C16—C17—C20—C20ii106.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···S4iii0.992.803.770 (5)165
C18—H18···S1iv0.952.873.805 (3)168
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H10O2PS2)2(C12H12N2)]
Mr620.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.6895 (2), 16.9503 (4), 14.6979 (3)
β (°) 103.599 (1)
V3)2830.6 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.829, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
41164, 6173, 4828
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.142, 1.10
No. of reflections6173
No. of parameters307
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.27

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2006) and ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Zn—S12.3211 (9)S1—P12.0153 (12)
Zn—S32.3228 (9)S2—P11.9437 (12)
Zn—N12.048 (2)S3—P22.0174 (13)
Zn—N22.071 (3)S4—P21.9303 (16)
S1—Zn—S3119.67 (3)S3—Zn—N1114.64 (8)
S1—Zn—N1110.85 (8)S3—Zn—N298.95 (7)
S1—Zn—N2112.14 (8)N1—Zn—N297.59 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···S4i0.992.803.770 (5)165
C18—H18···S1ii0.952.873.805 (3)168
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the departmental research grant AX-0026 from The Robert A. Welch Foundation. Cheminova is thanked for the gift of the dithiophosphate ligand used in this study. The authors also thank the EPSRC X-ray Crystallographic Service, University of Southampton for the data collection.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
First citationBrandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58. Web of Science CSD CrossRef CAS
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004a). CrystEngComm, 6, 221–226. Web of Science CSD CrossRef CAS
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004b). Acta Cryst. E60, m1005–m1007. Web of Science CSD CrossRef IUCr Journals
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds