metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Bis­[(di­phenyl­phosphino)meth­yl]­aniline}tetra­carbonyl­molybdenum(0)

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 30 January 2007; accepted 5 February 2007; online 14 February 2007)

The title compound, [Mo(CO)4{Ph2PCH2N(Ph)CH2PPh2}] or [Mo(C32H29NP2)(CO)4], is a tetra­carbonyl­molybdenum(0) complex of a chelating ditertiary phosphine with a P—C—N—C—P backbone. The geometry at the Mo centre is octa­hedral, while both diphenyl­phosphino centres coordinate in a cis fashion.

Comment

Organometallic compounds containing the group 6 metals Mo, Cr and W have been extensively studied over the past few decades for a variety of substitution reactions, one example being with phosphine ligands. Ligand substitution reactions have been accomplished in several ways, including under thermal or photolysis conditions, or displacement of labile precursors [e.g. piperidine, norbornadiene (nbd), THF, CH3CN] from appropriate Mo starting materials. Thus, neutral, octa­hedral compounds of the general type Mo(CO)n(PR3)6-n (n = 3–5) can be obtained using monodentate tertiary phosphines. Of these, one particular class of compound of inter­est are the tetra­carbonyl­molybdenum(0) diphosphine complexes Mo(CO)4(P—P) [P—P is a symmetric (Bookham et al., 1993[Bookham, J. L., Clegg, W., McFarlane, W. & Raper, E. S. (1993). J. Chem. Soc. Dalton Trans. pp. 3567-3573.]; Fernández et al., 1996[Fernández, E. J., Gimeno, M. C., Jones, P. G., Laguna, A., Laguna, M. & Olmos, E. (1996). J. Chem. Soc. Dalton Trans. pp. 3603-3608.]; Gaw et al., 2000[Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429-435.], 2002[Gaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294-297.]; Powell et al., 1992[Powell, J., Lough, A. & Wang, F. (1992). Organometallics, 11, 2289-2295.]) or non-symmetric ligand (Affandi et al., 1989[Affandi, S., Nelson, J. H. & Fischer, J. (1989). Inorg. Chem. 28, 4536-4544.])]. Recent inter­est has also focused on tetra­carbonyl­molybdenum(0) complexes with bidentate ligands bearing group 15 (Heinze & Jacob, 2002[Heinze, K. & Jacob, V. (2002). J. Chem. Soc. Dalton Trans. pp. 2379-2385.]) or group 16 donor centres (Heuer et al., 2002[Heuer, B., Matthews, M. L., Reid, G. & Ripley, M. (2002). J. Organomet. Chem. 655, 55-62.]). We describe here the synthesis of Mo(CO)4{Ph2PCH2N(Ph)CH2PPh2}, (1)[link], and its single-crystal X-ray structure.

[Scheme 1]

The molecular structure of compound (1) is shown in Fig. 1[link], with selected geometric data in Table 1[link], together with those for the related compounds Mo(CO4){Ph2P(CH2)3PPh2}, (2)[link] (Ueng & Hwang, 1991[Ueng, C.-H. & Hwang, G.-Y. (1991). Acta Cryst. C47, 522-525.]), and Mo(CO4){Ph2PCH2C(CH2)CH2PPh2}, (3)[link] (Bookham et al., 1993[Bookham, J. L., Clegg, W., McFarlane, W. & Raper, E. S. (1993). J. Chem. Soc. Dalton Trans. pp. 3567-3573.]). The structure of (1) comprises a cis-chelating Ph2PCH2N(Ph)CH2PPh2 ligand and four terminal CO ligands. The Mo—P bond lengths in (1) are slightly shorter than those of (2) and (3). The variations in Mo—C distances are as expected for the different π-acceptor properties of CO and –PPh2 groups. The Mo—C—O bond angles are all close to linear. The P—Mo—P bite angle is similar to those of (2) and (3). As anti­cipated, this bite angle is enlarged with respect to those found in complexes of the type Mo(CO)4{Ph2PN(R)PPh2} [R = H, P—Mo—P 65.29 (6)°; R = 2-MeOC6H4, P—Mo—P = 65.78 (2)°] in which the chelating Ph2PN(R)PPh2 ligands adopt near planar four-membered ring conformations (Gaw et al., 2000[Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429-435.]; Knorr & Strohmann, 1999[Knorr, M. & Strohmann, C. (1999). Organometallics, 18, 248-257.]). The six-membered chelate ring in (1) adopts a chair conformation with N1 above the P2C2 mean plane by 0.736 (3) Å and Mo below the plane by 0.986 (2) Å. The Mo—P—C—N—C—P metallacyclic ring is similar to those previously seen for other M—P—C—N—C—P compounds (Zhang et al., 2002[Zhang, J., Vittal, J. J., Henderson, W., Wheaton, J. R., Hall, I. H., Hor, T. S. A. & Yan, Y. K. (2002). J. Organomet. Chem. 650, 123-132.]). The N-arene is twisted about the N1—C18 axis by 47.2 (2)° with respect to the central heterocycle.

[Figure 1]
Figure 1
The molecular structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity.

Experimental

A solution of Mo(CO)4(nbd) (0.0613 g, 0.206 mmol) and Ph2PCH2N(Ph)CH2PPh2 (0.101 g, 0.206 mmol) in CH2Cl2 (10 ml) was stirred for 12 h at room temperature under N2. The volume was reduced to ca 2–3 ml under reduced pressure. Addition of diethyl ether (20 ml) and petroleum ether (b.p. 333–353 K, 10 ml) gave a pale-yellow solid which was collected by suction filtration. Yield 0.071 g, 50%. X-ray quality crystals of (1) were obtained by slow evaporation of the CH2Cl2/diethyl ether/petroleum ether filtrate. Calculated for C36H29MoNO4P2·0.5C6H14: C 63.25, H 4.90, N 1.89; found: C 63.09, H 4.75, N 1.87%.

Crystal data
  • [Mo(C32H29NP2)(CO)4]

  • Mr = 697.48

  • Triclinic, [P \overline 1]

  • a = 10.2072 (6) Å

  • b = 11.2800 (7) Å

  • c = 14.5527 (9) Å

  • α = 100.047 (1)°

  • β = 93.162 (1)°

  • γ = 101.316 (1)°

  • V = 1610.84 (17) Å3

  • Z = 2

  • Dx = 1.438 Mg m−3

  • Synchrotron radiation

  • λ = 0.6910 Å

  • μ = 0.55 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.15 × 0.06 × 0.03 mm

Data collection
  • Bruker APEX II CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Version 2004/1. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.984

  • 19074 measured reflections

  • 10047 independent reflections

  • 8204 reflections with I > 2σ(I)

  • Rint = 0.065

  • θmax = 31.0°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.00

  • 10047 reflections

  • 397 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0783P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected geometric parameters (Å, °) for (1) and a comparison with reported compounds (2) and (3)

  (1) (2) (3)
Mo—C(trans to C) 2.016 (3)/2.043 (3) 2.035 (7)/2.023 (7) 2.016 (4)/2.030 (4)
Mo—C(trans to P) 2.007 (3)/1.994 (3) 1.968 (5)/1.968 (5) 1.999 (4)/1.986 (4)
Mo—P 2.5005 (8)/2.4986 (8) 2.538 (1)/2.538 (1) 2.5199 (11)/2.5094 (13)
C—Mo—C(trans to C) 178.21 (12) 174.8 (3) 171.0 (2)
C—Mo—C(cis, av.) 89.72 (13) 88.7 (2) 88.3 (2)
P—Mo—P 86.75 (2) 89.74 (4) 85.14 (4)
(1) This work. (2) Ueng & Hwang (1991[Ueng, C.-H. & Hwang, G.-Y. (1991). Acta Cryst. C47, 522-525.]). (3) Bookham et al. (1993[Bookham, J. L., Clegg, W., McFarlane, W. & Raper, E. S. (1993). J. Chem. Soc. Dalton Trans. pp. 3567-3573.]).

H atoms were positioned geometrically (C—H = 0.95 Å for aryl H and 0.99 Å for methyl­ene H), and refined using a riding model. Uiso(H) values were set to 1.2Ueq(C).

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

{N,N-bis[(diphenylphosphino)methyl]aniline}tetracarbonylmolybdenum(0) top
Crystal data top
[Mo(C32H29NP2)(CO)4]Z = 2
Mr = 697.48F(000) = 712
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6910 Å
a = 10.2072 (6) ÅCell parameters from 4141 reflections
b = 11.2800 (7) Åθ = 2.4–29.2°
c = 14.5527 (9) ŵ = 0.55 mm1
α = 100.047 (1)°T = 120 K
β = 93.162 (1)°Plate, colourless
γ = 101.316 (1)°0.15 × 0.06 × 0.03 mm
V = 1610.84 (17) Å3
Data collection top
Bruker APEX II CCD
diffractometer
10047 independent reflections
Radiation source: Daresbury SRS station 9.88204 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.065
ω rotation with narrow frames scansθmax = 31.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.923, Tmax = 0.984k = 1616
19074 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0783P)2]
where P = (Fo2 + 2Fc2)/3
10047 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.97 e Å3
Special details top

Experimental. 1H NMR (400 MHz, CDCl3, p.p.m.): δ 7.54–6.02 (arom. H, 25H, m), 3.99 (CH2, 4H, s). 31P{1H} NMR (162 MHz, CDCl3, p.p.m.): δ 18.8. IR νmax (KBr, cm-1): 2024, 1927, 1901, 1885 (CO). Calculated for C36H29MoNO4P2·0.5C6H14: C, 63.25; H, 4.90; N, 1.89. Found: C, 63.09; H, 4.75; N, 1.87%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.13066 (2)0.85871 (2)0.688421 (16)0.01970 (8)
C10.1835 (3)1.0108 (3)0.6580 (2)0.0247 (6)
O10.2141 (2)1.0981 (2)0.64239 (18)0.0354 (5)
C20.2241 (3)0.8728 (3)0.8072 (2)0.0296 (6)
O20.2767 (3)0.8813 (3)0.8753 (2)0.0477 (7)
C30.2992 (3)0.7540 (3)0.6186 (2)0.0253 (6)
O30.3979 (2)0.6962 (2)0.57755 (18)0.0379 (6)
C40.0417 (3)0.8423 (3)0.5657 (2)0.0250 (6)
O40.0025 (3)0.8353 (3)0.49443 (17)0.0362 (5)
P10.05987 (7)0.67674 (7)0.73650 (5)0.02001 (15)
C50.1977 (3)0.5496 (3)0.7452 (2)0.0236 (6)
C60.2651 (4)0.4766 (3)0.6616 (2)0.0344 (7)
H60.23820.49340.60290.041*
C70.3715 (4)0.3796 (4)0.6649 (3)0.0418 (9)
H70.41580.32920.60820.050*
C80.4136 (4)0.3557 (3)0.7501 (3)0.0372 (8)
H80.48650.28940.75170.045*
C90.3492 (3)0.4286 (3)0.8324 (3)0.0322 (7)
H90.37800.41230.89070.039*
C100.2417 (3)0.5265 (3)0.8305 (2)0.0281 (6)
H100.19880.57710.88750.034*
C110.0602 (3)0.5999 (3)0.6749 (2)0.0233 (5)
C120.0658 (3)0.4767 (3)0.6789 (2)0.0310 (7)
H120.00260.42710.70540.037*
C130.1717 (4)0.4291 (3)0.6437 (3)0.0381 (8)
H130.17450.34590.64580.046*
C140.2736 (4)0.4995 (4)0.6056 (3)0.0393 (8)
H140.34720.46620.58380.047*
C150.2665 (4)0.6200 (4)0.5997 (2)0.0348 (7)
H150.33430.66860.57190.042*
C160.1609 (3)0.6692 (3)0.6344 (2)0.0281 (6)
H160.15740.75170.63040.034*
C170.0254 (3)0.7136 (3)0.8578 (2)0.0224 (5)
H17A0.03700.74260.90210.027*
H17B0.04630.63750.87440.027*
N10.1492 (2)0.8075 (2)0.86898 (17)0.0220 (5)
C180.2662 (3)0.7786 (3)0.9091 (2)0.0209 (5)
C190.3125 (3)0.6768 (3)0.8644 (2)0.0279 (6)
H190.26190.62510.81030.034*
C200.4310 (3)0.6502 (3)0.8977 (2)0.0303 (7)
H200.46080.58060.86630.036*
C210.5060 (3)0.7235 (3)0.9761 (3)0.0331 (7)
H210.58780.70550.99840.040*
C220.4607 (3)0.8236 (3)1.0219 (2)0.0321 (7)
H220.51140.87391.07650.038*
C230.3413 (3)0.8522 (3)0.9892 (2)0.0261 (6)
H230.31150.92141.02140.031*
C240.1326 (3)0.9344 (3)0.8885 (2)0.0227 (5)
H24A0.21870.98860.91730.027*
H24B0.06500.94210.93410.027*
P20.07867 (7)0.98633 (7)0.78070 (5)0.01930 (15)
C250.2311 (3)1.0066 (3)0.71928 (19)0.0204 (5)
C260.3469 (3)0.9680 (3)0.7441 (2)0.0253 (6)
H260.35040.92780.79610.030*
C270.4581 (3)0.9880 (3)0.6929 (2)0.0299 (6)
H270.53700.96140.71030.036*
C280.4542 (3)1.0466 (3)0.6169 (2)0.0312 (7)
H280.53071.06120.58290.037*
C290.3375 (3)1.0839 (3)0.5905 (2)0.0323 (7)
H290.33381.12310.53800.039*
C300.2263 (3)1.0632 (3)0.6417 (2)0.0274 (6)
H300.14651.08800.62350.033*
C310.0780 (3)1.1464 (3)0.8338 (2)0.0220 (5)
C320.1966 (3)1.2350 (3)0.8529 (2)0.0260 (6)
H320.27891.21280.83740.031*
C330.1961 (3)1.3553 (3)0.8943 (2)0.0296 (6)
H330.27781.41500.90660.036*
C340.0770 (3)1.3888 (3)0.9178 (2)0.0286 (6)
H340.07671.47140.94570.034*
C350.0418 (3)1.3012 (3)0.9006 (2)0.0303 (7)
H350.12351.32340.91760.036*
C360.0412 (3)1.1803 (3)0.8581 (2)0.0265 (6)
H360.12301.12070.84570.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01699 (13)0.01926 (13)0.02395 (14)0.00605 (9)0.00209 (9)0.00448 (9)
C10.0199 (13)0.0262 (14)0.0310 (15)0.0079 (11)0.0041 (11)0.0093 (12)
O10.0315 (12)0.0337 (13)0.0472 (14)0.0153 (10)0.0040 (10)0.0153 (11)
C20.0296 (16)0.0209 (14)0.0385 (17)0.0065 (12)0.0082 (13)0.0030 (12)
O20.0563 (18)0.0376 (15)0.0491 (16)0.0070 (13)0.0307 (14)0.0031 (12)
C30.0203 (13)0.0273 (14)0.0282 (14)0.0049 (11)0.0016 (11)0.0058 (11)
O30.0255 (12)0.0391 (14)0.0435 (14)0.0008 (10)0.0041 (10)0.0016 (11)
C40.0193 (13)0.0258 (14)0.0295 (15)0.0056 (11)0.0013 (11)0.0039 (11)
O40.0342 (13)0.0491 (15)0.0275 (12)0.0129 (11)0.0063 (9)0.0069 (11)
P10.0200 (3)0.0180 (3)0.0222 (3)0.0049 (3)0.0013 (3)0.0032 (3)
C50.0230 (13)0.0165 (12)0.0311 (15)0.0042 (10)0.0028 (11)0.0039 (11)
C60.0343 (17)0.0308 (17)0.0325 (17)0.0022 (14)0.0014 (13)0.0021 (13)
C70.039 (2)0.0361 (19)0.041 (2)0.0067 (16)0.0017 (15)0.0008 (15)
C80.0309 (17)0.0238 (15)0.054 (2)0.0000 (13)0.0072 (15)0.0061 (15)
C90.0290 (16)0.0278 (15)0.0442 (19)0.0089 (13)0.0138 (14)0.0121 (14)
C100.0268 (15)0.0243 (14)0.0346 (16)0.0077 (12)0.0033 (12)0.0064 (12)
C110.0263 (14)0.0227 (13)0.0211 (13)0.0101 (11)0.0003 (10)0.0005 (10)
C120.0340 (17)0.0263 (15)0.0324 (16)0.0135 (13)0.0005 (13)0.0022 (12)
C130.048 (2)0.0319 (17)0.0355 (18)0.0215 (16)0.0026 (15)0.0046 (14)
C140.0382 (19)0.046 (2)0.0367 (18)0.0245 (17)0.0052 (14)0.0017 (15)
C150.0322 (17)0.044 (2)0.0315 (17)0.0158 (15)0.0071 (13)0.0049 (14)
C160.0265 (15)0.0299 (15)0.0289 (15)0.0096 (12)0.0030 (11)0.0040 (12)
C170.0224 (13)0.0199 (13)0.0249 (13)0.0042 (10)0.0006 (10)0.0052 (10)
N10.0235 (12)0.0159 (10)0.0259 (12)0.0054 (9)0.0018 (9)0.0014 (9)
C180.0199 (13)0.0186 (12)0.0260 (13)0.0060 (10)0.0016 (10)0.0071 (10)
C190.0308 (16)0.0224 (14)0.0304 (15)0.0078 (12)0.0014 (12)0.0031 (11)
C200.0307 (16)0.0256 (15)0.0387 (17)0.0142 (13)0.0018 (13)0.0080 (13)
C210.0217 (14)0.0341 (17)0.0459 (19)0.0052 (13)0.0012 (13)0.0160 (15)
C220.0264 (15)0.0322 (16)0.0361 (17)0.0045 (13)0.0073 (13)0.0073 (13)
C230.0241 (14)0.0256 (14)0.0278 (14)0.0054 (11)0.0023 (11)0.0046 (11)
C240.0243 (13)0.0195 (12)0.0255 (13)0.0089 (11)0.0000 (10)0.0032 (10)
P20.0188 (3)0.0167 (3)0.0234 (3)0.0065 (3)0.0023 (3)0.0031 (3)
C250.0181 (12)0.0182 (12)0.0232 (13)0.0029 (10)0.0002 (9)0.0009 (10)
C260.0229 (14)0.0230 (14)0.0318 (15)0.0081 (11)0.0022 (11)0.0061 (11)
C270.0216 (14)0.0322 (16)0.0373 (17)0.0112 (12)0.0058 (12)0.0034 (13)
C280.0236 (15)0.0338 (17)0.0332 (16)0.0011 (12)0.0057 (12)0.0025 (13)
C290.0287 (16)0.0376 (18)0.0287 (16)0.0030 (14)0.0002 (12)0.0061 (13)
C300.0226 (14)0.0290 (15)0.0304 (15)0.0042 (12)0.0013 (11)0.0068 (12)
C310.0249 (14)0.0186 (12)0.0237 (13)0.0083 (10)0.0015 (10)0.0036 (10)
C320.0243 (14)0.0211 (13)0.0318 (15)0.0079 (11)0.0002 (11)0.0001 (11)
C330.0342 (16)0.0177 (13)0.0362 (17)0.0062 (12)0.0002 (13)0.0030 (12)
C340.0431 (18)0.0201 (13)0.0255 (14)0.0150 (13)0.0024 (12)0.0028 (11)
C350.0348 (17)0.0286 (15)0.0329 (16)0.0175 (13)0.0088 (13)0.0063 (12)
C360.0272 (15)0.0229 (14)0.0309 (15)0.0101 (12)0.0036 (11)0.0034 (11)
Geometric parameters (Å, º) top
Mo1—C31.994 (3)N1—C241.455 (4)
Mo1—C12.007 (3)C18—C231.395 (4)
Mo1—C22.016 (3)C18—C191.398 (4)
Mo1—C42.043 (3)C19—C201.385 (4)
Mo1—P22.4986 (8)C19—H190.9500
Mo1—P12.5005 (8)C20—C211.377 (5)
C1—O11.145 (4)C20—H200.9500
C2—O21.152 (4)C21—C221.382 (5)
C3—O31.156 (4)C21—H210.9500
C4—O41.151 (4)C22—C231.400 (4)
P1—C111.823 (3)C22—H220.9500
P1—C51.828 (3)C23—H230.9500
P1—C171.865 (3)C24—P21.860 (3)
C5—C101.393 (4)C24—H24A0.9900
C5—C61.403 (4)C24—H24B0.9900
C6—C71.392 (5)P2—C251.832 (3)
C6—H60.9500P2—C311.838 (3)
C7—C81.387 (5)C25—C261.388 (4)
C7—H70.9500C25—C301.394 (4)
C8—C91.378 (5)C26—C271.395 (4)
C8—H80.9500C26—H260.9500
C9—C101.401 (4)C27—C281.387 (5)
C9—H90.9500C27—H270.9500
C10—H100.9500C28—C291.394 (5)
C11—C161.389 (4)C28—H280.9500
C11—C121.413 (4)C29—C301.396 (4)
C12—C131.383 (5)C29—H290.9500
C12—H120.9500C30—H300.9500
C13—C141.384 (6)C31—C321.389 (4)
C13—H130.9500C31—C361.391 (4)
C14—C151.392 (5)C32—C331.386 (4)
C14—H140.9500C32—H320.9500
C15—C161.387 (4)C33—C341.386 (5)
C15—H150.9500C33—H330.9500
C16—H160.9500C34—C351.385 (5)
C17—N11.462 (4)C34—H340.9500
C17—H17A0.9900C35—C361.397 (4)
C17—H17B0.9900C35—H350.9500
N1—C181.419 (4)C36—H360.9500
C3—Mo1—C190.78 (13)C18—N1—C17117.0 (2)
C3—Mo1—C289.67 (13)C24—N1—C17115.5 (2)
C1—Mo1—C291.66 (13)C23—C18—C19118.4 (3)
C3—Mo1—C488.59 (12)C23—C18—N1122.4 (3)
C1—Mo1—C487.92 (12)C19—C18—N1119.1 (3)
C2—Mo1—C4178.21 (12)C20—C19—C18120.9 (3)
C3—Mo1—P2177.99 (9)C20—C19—H19119.5
C1—Mo1—P290.49 (9)C18—C19—H19119.5
C2—Mo1—P288.74 (10)C21—C20—C19120.7 (3)
C4—Mo1—P293.01 (8)C21—C20—H20119.6
C3—Mo1—P191.92 (9)C19—C20—H20119.6
C1—Mo1—P1176.40 (9)C20—C21—C22119.1 (3)
C2—Mo1—P185.98 (9)C20—C21—H21120.4
C4—Mo1—P194.52 (9)C22—C21—H21120.4
P2—Mo1—P186.75 (2)C21—C22—C23121.0 (3)
O1—C1—Mo1178.7 (3)C21—C22—H22119.5
O2—C2—Mo1179.6 (3)C23—C22—H22119.5
O3—C3—Mo1178.1 (3)C18—C23—C22119.8 (3)
O4—C4—Mo1176.2 (3)C18—C23—H23120.1
C11—P1—C5103.40 (14)C22—C23—H23120.1
C11—P1—C1799.70 (13)N1—C24—P2112.1 (2)
C5—P1—C17101.38 (14)N1—C24—H24A109.2
C11—P1—Mo1122.17 (10)P2—C24—H24A109.2
C5—P1—Mo1114.87 (10)N1—C24—H24B109.2
C17—P1—Mo1112.43 (9)P2—C24—H24B109.2
C10—C5—C6119.2 (3)H24A—C24—H24B107.9
C10—C5—P1122.8 (2)C25—P2—C31101.21 (13)
C6—C5—P1117.8 (2)C25—P2—C24103.34 (13)
C7—C6—C5119.8 (3)C31—P2—C2498.14 (13)
C7—C6—H6120.1C25—P2—Mo1117.00 (9)
C5—C6—H6120.1C31—P2—Mo1118.07 (10)
C8—C7—C6120.7 (3)C24—P2—Mo1116.15 (10)
C8—C7—H7119.7C26—C25—C30119.3 (3)
C6—C7—H7119.7C26—C25—P2124.5 (2)
C9—C8—C7119.7 (3)C30—C25—P2116.2 (2)
C9—C8—H8120.2C25—C26—C27120.2 (3)
C7—C8—H8120.2C25—C26—H26119.9
C8—C9—C10120.5 (3)C27—C26—H26119.9
C8—C9—H9119.8C28—C27—C26120.4 (3)
C10—C9—H9119.8C28—C27—H27119.8
C5—C10—C9120.0 (3)C26—C27—H27119.8
C5—C10—H10120.0C27—C28—C29119.8 (3)
C9—C10—H10120.0C27—C28—H28120.1
C16—C11—C12118.8 (3)C29—C28—H28120.1
C16—C11—P1118.8 (2)C28—C29—C30119.6 (3)
C12—C11—P1121.8 (2)C28—C29—H29120.2
C13—C12—C11119.4 (3)C30—C29—H29120.2
C13—C12—H12120.3C25—C30—C29120.6 (3)
C11—C12—H12120.3C25—C30—H30119.7
C12—C13—C14121.6 (3)C29—C30—H30119.7
C12—C13—H13119.2C32—C31—C36118.8 (3)
C14—C13—H13119.2C32—C31—P2120.9 (2)
C13—C14—C15118.9 (3)C36—C31—P2120.3 (2)
C13—C14—H14120.5C33—C32—C31120.7 (3)
C15—C14—H14120.5C33—C32—H32119.6
C16—C15—C14120.2 (3)C31—C32—H32119.6
C16—C15—H15119.9C34—C33—C32120.3 (3)
C14—C15—H15119.9C34—C33—H33119.9
C15—C16—C11121.0 (3)C32—C33—H33119.9
C15—C16—H16119.5C35—C34—C33119.7 (3)
C11—C16—H16119.5C35—C34—H34120.2
N1—C17—P1113.2 (2)C33—C34—H34120.2
N1—C17—H17A108.9C34—C35—C36119.9 (3)
P1—C17—H17A108.9C34—C35—H35120.0
N1—C17—H17B108.9C36—C35—H35120.0
P1—C17—H17B108.9C31—C36—C35120.6 (3)
H17A—C17—H17B107.8C31—C36—H36119.7
C18—N1—C24118.7 (2)C35—C36—H36119.7
C2—Mo1—P1—C11171.65 (15)C19—C20—C21—C220.8 (5)
C4—Mo1—P1—C1110.07 (14)C20—C21—C22—C230.9 (5)
P2—Mo1—P1—C1182.69 (12)C19—C18—C23—C220.7 (5)
C3—Mo1—P1—C527.57 (14)N1—C18—C23—C22175.7 (3)
C2—Mo1—P1—C561.96 (15)C21—C22—C23—C180.1 (5)
C4—Mo1—P1—C5116.31 (14)C18—N1—C24—P2133.9 (2)
P2—Mo1—P1—C5150.92 (11)C17—N1—C24—P279.5 (3)
C3—Mo1—P1—C17142.82 (13)N1—C24—P2—C2573.8 (2)
C2—Mo1—P1—C1753.29 (14)N1—C24—P2—C31177.4 (2)
C4—Mo1—P1—C17128.44 (13)N1—C24—P2—Mo155.7 (2)
P2—Mo1—P1—C1735.67 (10)C1—Mo1—P2—C2594.18 (13)
C11—P1—C5—C10121.7 (3)C2—Mo1—P2—C25174.17 (14)
C17—P1—C5—C1018.7 (3)C4—Mo1—P2—C256.24 (14)
Mo1—P1—C5—C10102.7 (3)P1—Mo1—P2—C2588.13 (11)
C11—P1—C5—C661.4 (3)C1—Mo1—P2—C3127.08 (14)
C17—P1—C5—C6164.4 (3)C2—Mo1—P2—C3164.56 (14)
Mo1—P1—C5—C674.2 (3)C4—Mo1—P2—C31115.03 (14)
C10—C5—C6—C72.4 (5)P1—Mo1—P2—C31150.61 (11)
P1—C5—C6—C7179.4 (3)C1—Mo1—P2—C24143.22 (13)
C5—C6—C7—C81.3 (6)C2—Mo1—P2—C2451.58 (14)
C6—C7—C8—C90.2 (6)C4—Mo1—P2—C24128.83 (13)
C7—C8—C9—C100.0 (5)P1—Mo1—P2—C2434.46 (10)
C6—C5—C10—C92.2 (5)C31—P2—C25—C26111.6 (3)
P1—C5—C10—C9179.1 (2)C24—P2—C25—C2610.3 (3)
C8—C9—C10—C51.0 (5)Mo1—P2—C25—C26118.7 (2)
C5—P1—C11—C16163.2 (2)C31—P2—C25—C3069.5 (2)
C17—P1—C11—C1692.5 (3)C24—P2—C25—C30170.7 (2)
Mo1—P1—C11—C1631.9 (3)Mo1—P2—C25—C3060.3 (2)
C5—P1—C11—C1226.2 (3)C30—C25—C26—C271.3 (4)
C17—P1—C11—C1278.1 (3)P2—C25—C26—C27179.8 (2)
Mo1—P1—C11—C12157.5 (2)C25—C26—C27—C280.0 (5)
C16—C11—C12—C130.9 (5)C26—C27—C28—C291.0 (5)
P1—C11—C12—C13169.7 (3)C27—C28—C29—C300.8 (5)
C11—C12—C13—C140.8 (5)C26—C25—C30—C291.5 (5)
C12—C13—C14—C152.2 (6)P2—C25—C30—C29179.5 (2)
C13—C14—C15—C162.0 (5)C28—C29—C30—C250.5 (5)
C14—C15—C16—C110.4 (5)C25—P2—C31—C3225.4 (3)
C12—C11—C16—C151.1 (5)C24—P2—C31—C3280.1 (3)
P1—C11—C16—C15169.8 (3)Mo1—P2—C31—C32154.4 (2)
C11—P1—C17—N169.0 (2)C25—P2—C31—C36156.5 (2)
C5—P1—C17—N1174.9 (2)C24—P2—C31—C3698.0 (3)
Mo1—P1—C17—N161.9 (2)Mo1—P2—C31—C3627.5 (3)
P1—C17—N1—C18128.0 (2)C36—C31—C32—C330.8 (5)
P1—C17—N1—C2484.9 (3)P2—C31—C32—C33179.0 (2)
C24—N1—C18—C2322.5 (4)C31—C32—C33—C340.4 (5)
C17—N1—C18—C23123.5 (3)C32—C33—C34—C350.6 (5)
C24—N1—C18—C19153.9 (3)C33—C34—C35—C361.1 (5)
C17—N1—C18—C1960.1 (4)C32—C31—C36—C350.3 (5)
C23—C18—C19—C200.8 (5)P2—C31—C36—C35178.4 (2)
N1—C18—C19—C20175.7 (3)C34—C35—C36—C310.7 (5)
C18—C19—C20—C210.1 (5)
Table 1 top
Selected geometric parameters (Å, °) for (1) and a comparison with reported compounds (2) and (3)
123
Mo—C(trans to C)2.016 (3)/2.043 (3)2.035 (7)/2.023 (7)2.016 (4)/2.030 (4)
Mo—C(trans to P)2.007 (3)/1.994 (3)1.968 (5)/1.968 (5)1.999 (4)/1.986 (4)
Mo—P2.5005 (8)/2.4986 (8)2.538 (1)/2.538 (1)2.5199 (11)/2.5094 (13)
C—Mo—C(trans to C)178.21 (12)174.8 (3)171.0 (2)
C—Mo—C(cis, av.)89.72 (13)88.7 (2)88.3 (2)
P—Mo—P86.75 (2)89.74 (4)85.14 (4)
(1) this work; (2) Ueng & Hwang (1991); (3) Bookham et al. (1993).
 

Acknowledgements

We acknowledge the EPSRC and Loughborough University for the provision of studentships (GMB, NMSB). The authors acknowledge Dr John Warren and Dr Timothy Prior for scientific support at Daresbury Laboratory Station 9.8 during the data collection of (1).

References

First citationAffandi, S., Nelson, J. H. & Fischer, J. (1989). Inorg. Chem. 28, 4536–4544.  CSD CrossRef CAS Web of Science Google Scholar
First citationBookham, J. L., Clegg, W., McFarlane, W. & Raper, E. S. (1993). J. Chem. Soc. Dalton Trans. pp. 3567–3573.  CrossRef Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernández, E. J., Gimeno, M. C., Jones, P. G., Laguna, A., Laguna, M. & Olmos, E. (1996). J. Chem. Soc. Dalton Trans. pp. 3603–3608.  Google Scholar
First citationGaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429–435.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeinze, K. & Jacob, V. (2002). J. Chem. Soc. Dalton Trans. pp. 2379–2385.  Web of Science CSD CrossRef Google Scholar
First citationHeuer, B., Matthews, M. L., Reid, G. & Ripley, M. (2002). J. Organomet. Chem. 655, 55–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M. & Strohmann, C. (1999). Organometallics, 18, 248–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationPowell, J., Lough, A. & Wang, F. (1992). Organometallics, 11, 2289–2295.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. Version 2004/1. University of Göttingen, Germany.  Google Scholar
First citationUeng, C.-H. & Hwang, G.-Y. (1991). Acta Cryst. C47, 522–525.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, J., Vittal, J. J., Henderson, W., Wheaton, J. R., Hall, I. H., Hor, T. S. A. & Yan, Y. K. (2002). J. Organomet. Chem. 650, 123–132.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds