organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(2-formyl­phen­­oxy)ethano­ate–ethyl 2-(2-carb­oxy­phen­­oxy)ethano­ate [0.682 (7)/0.318 (7)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 February 2007; accepted 15 February 2007; online 23 February 2007)

In the title cocrystal, 0.682C11H12O4.0.318C11H12O5, the carboxylic acid constituent shows an intra­molecular O—H⋯(O,O) hydrogen bond.

Comment

The title compound, (I)/(II) (Fig. 1[link]), is a cocrystal of a substituted benzaldehyde and benzoic acid that arose unexpectedly during our studies of novel cyclization reactions (Williamson et al., 2005[Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2005). Acta Cryst. E61, o1566-o1568.]). Auto-oxidation reactions of benz­aldehydes, probably proceeding via a radical mechanism, have been known for many years (Mulcahy & Watt, 1952[Mulcahy, M. F. R. & Watt, I. C. (1952). Proc. R. Soc. London Ser. A, 211, 10-29.]).

[Scheme 1]

Except for the aldehyde –H and carboxylic acid –OH groups, all the atoms in (I)/(II) are equivalent and overlap in the cocrystal, and the geometric parameters for (I)/(II) may be regarded as normal (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Compound (II) displays a bifurcated intra­molecular O—H⋯(O,O) bond (Table 1[link]). The fact that (II) prefers (or is forced) to form this intra­molecular inter­action may help to explain why the aldehyde and acid are able to crystallize together.

Two short intermolecular C—H⋯O inter­actions occur in the cocrystal (Table 1[link]). For the C6—H6⋯O1i bond (see Table 1[link] for symmetry code), the O atom of the aldehyde/carboxylic acid C=O group serves as one of the acceptors. Thus, regardless of the identity of an individual mol­ecule (aldehyde or acid), an infinite (along [010]) C(6) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) generated by the 21 screw axis is established. There are no ππ stacking inter­actions observed in this cocrystal; the minimum separation of the centroids of the benzene rings of nearby mol­ecules is greater than 4.8 Å.

[Figure 1]
Figure 1
The structures of two mol­ecules in the cocrystal, with one represented as the acid, (II), and one as the aldehyde, (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. Hydrogen bonds are indicated by double-dashed lines. Only one disorder component of the C11 methyl group is shown. (Symmetry code as in Table 1[link].)

Experimental

A dry two-necked flask was charged with NaH (0.360 g, 15 mmol), which had been washed with dry petrol (3 × 1 ml). Dry dimethyl­formamide (40 ml) was added and the suspension cooled to 273 K. Salicylaldehyde (1.220 g, 1.06 ml, 10 mmol) was added, and the solution stirred for 20 min. Ethyl bromo­acetate (2.12 g, 1.20 ml, 11 mmol) was added in one portion. The solution was allowed to warm to room temperature and was then stirred for 1 h. H2O (60 ml) was added, followed by extraction with Et2O (3 × 50 ml). The organic fractions were combined, washed with saturated brine (75 ml) and dried over MgSO4, and the solvent was removed in vacuo. Chromatography, eluting with 20% EtOAc in hexane, collecting the fraction with Rf = 0.22, yielded the desired product as an oil, which crystallized slowly at room temperature (1.90 g, 91%; m.p. 333–337 K). Analysis: C11H12O4 requires: C 63.45, H 5.81%; found C 61.80, H, 5.72%. IR (KBr, νmax, cm−1): 2954.0 (Ar), 2843.3 [C=O (aldehyde)], 1740.3 [C=O (ester)], 1695.9 [C=O (aldehyde)].

Recrystallization from EtOH did not succeed immediately. However, colourless needles were obtained upon slow (7 d) evaporation of an ethanol solution. It is likely that auto-oxidation occurred at this stage to yield the final cocrystal of (I)/(II).

Crystal data
  • 0.682C11H12O4·0.318C11H12O5

  • Mr = 213.29

  • Orthorhombic, P 21 21 21

  • a = 4.8119 (2) Å

  • b = 13.8528 (6) Å

  • c = 15.6831 (7) Å

  • V = 1045.41 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • 0.42 × 0.25 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.993

  • 9977 measured reflections

  • 1419 independent reflections

  • 1129 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.06

  • 1419 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.99 1.70 2.497 (5) 134
O2—H2⋯O4 0.99 2.50 3.395 (5) 151
C6—H6⋯O1i 0.95 2.56 3.504 (3) 174
C8—H8B⋯O4ii 0.99 2.43 3.354 (3) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The mol­ecules of (I)[link] and (II) are achiral, and thus the observed non-centrosymmetric space group must arise from a packing effect. After initial modelling as the expected aldehyde [compound (I)], very high residuals (wR > 0.40) and a large difference peak near atom C1 resulted. Modelling the crystal structure as compound (II) also resulted in very high residuals, and unreasonable Uij values for atom O2. Refinement as a cocrystal of (I)[link] + (II) (occupancies of the –O2—H2 and –H1 groups/atoms attached to atom C1 refined with their sum constrained to unity) rapidly converged to a physically plausible result with low residuals.

The C11 methyl group is disordered over two positions of equal occupancy [refined value for the first component = 0.50 (3)]. The O-bound H atom was located in a difference map and refined as riding, with Uiso(H) = 1.2Ueq(O). All C-bound H atoms were placed in calculated positions, with C—H = 0.95–0.99 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Ethyl 2-(2-formylphenoxy)ethanoate–ethyl 2-(2-carboxyphenoxy)ethanoate [0.682 (7)/0.318 (7)] top
Crystal data top
0.682C11H12O4·0.318C11H12O5F(000) = 450
Mr = 213.29Dx = 1.355 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1430 reflections
a = 4.8119 (2) Åθ = 2.9–27.5°
b = 13.8528 (6) ŵ = 0.11 mm1
c = 15.6831 (7) ÅT = 120 K
V = 1045.41 (8) Å3Slab, colourless
Z = 40.42 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed tube1129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 65
Tmin = 0.957, Tmax = 0.993k = 1713
9977 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.0632P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1419 reflectionsΔρmax = 0.19 e Å3
157 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3059 (5)0.92120 (16)0.70792 (15)0.0331 (5)
H10.42980.90210.75200.040*0.682 (7)
C20.0918 (5)0.85223 (14)0.67935 (13)0.0279 (5)
C30.0628 (5)0.87175 (16)0.60610 (14)0.0326 (5)
H30.03020.92990.57560.039*
C40.2616 (5)0.80823 (17)0.57725 (15)0.0342 (6)
H40.36440.82210.52700.041*
C50.3106 (5)0.72371 (17)0.62229 (14)0.0325 (5)
H50.44720.67960.60230.039*
C60.1631 (5)0.70251 (15)0.69608 (13)0.0279 (5)
H60.20140.64520.72720.033*
C70.0399 (4)0.76560 (15)0.72365 (13)0.0257 (5)
C80.1580 (5)0.66534 (15)0.84300 (13)0.0276 (5)
H8A0.19440.60770.80740.033*
H8B0.03540.66210.86430.033*
C90.3585 (4)0.66947 (15)0.91613 (13)0.0276 (5)
C100.4839 (6)0.5919 (2)1.04427 (16)0.0456 (7)
H10A0.50940.65641.07030.055*
H10B0.66830.56501.02940.055*
C11A0.324 (3)0.5233 (10)1.1055 (6)0.046 (2)0.50 (3)
H11A0.43060.51511.15820.068*0.50 (3)
H11B0.29880.46041.07800.068*0.50 (3)
H11C0.14190.55121.11880.068*0.50 (3)
C11B0.449 (6)0.5058 (10)1.0888 (11)0.065 (5)0.50 (3)
H11D0.57270.50531.13850.098*0.50 (3)
H11E0.49480.45141.05140.098*0.50 (3)
H11F0.25590.50031.10780.098*0.50 (3)
O10.3320 (3)1.00164 (11)0.67838 (12)0.0434 (5)
O20.4619 (10)0.9054 (4)0.7772 (3)0.037 (2)0.318 (7)
H20.42880.84360.80740.045*0.318 (7)
O30.1994 (3)0.75114 (10)0.79483 (9)0.0306 (4)
O40.5400 (3)0.72816 (12)0.92481 (11)0.0384 (4)
O50.3060 (3)0.59732 (10)0.96963 (9)0.0321 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (12)0.0300 (12)0.0360 (12)0.0012 (10)0.0098 (11)0.0001 (10)
C20.0286 (11)0.0231 (10)0.0319 (11)0.0051 (9)0.0095 (9)0.0015 (10)
C30.0343 (12)0.0319 (12)0.0316 (12)0.0089 (10)0.0067 (10)0.0057 (10)
C40.0314 (12)0.0395 (13)0.0316 (11)0.0059 (11)0.0005 (10)0.0045 (10)
C50.0274 (11)0.0344 (12)0.0357 (12)0.0015 (11)0.0010 (10)0.0042 (10)
C60.0271 (11)0.0235 (10)0.0330 (11)0.0008 (9)0.0027 (10)0.0001 (9)
C70.0261 (11)0.0240 (11)0.0271 (11)0.0053 (9)0.0039 (9)0.0013 (9)
C80.0277 (11)0.0257 (11)0.0296 (11)0.0018 (10)0.0022 (9)0.0016 (9)
C90.0235 (10)0.0280 (11)0.0314 (11)0.0047 (10)0.0017 (10)0.0015 (9)
C100.0481 (15)0.0493 (15)0.0395 (14)0.0060 (13)0.0176 (12)0.0030 (13)
C11A0.043 (5)0.061 (5)0.033 (3)0.003 (4)0.007 (4)0.009 (3)
C11B0.089 (12)0.050 (5)0.057 (6)0.013 (6)0.040 (7)0.016 (4)
O10.0448 (10)0.0260 (8)0.0595 (11)0.0027 (8)0.0151 (10)0.0015 (8)
O20.033 (3)0.034 (3)0.045 (4)0.008 (2)0.002 (2)0.008 (2)
O30.0330 (9)0.0288 (8)0.0300 (8)0.0045 (7)0.0035 (7)0.0051 (6)
O40.0288 (9)0.0407 (9)0.0456 (9)0.0056 (8)0.0043 (8)0.0014 (8)
O50.0359 (9)0.0298 (8)0.0306 (8)0.0015 (7)0.0069 (7)0.0017 (7)
Geometric parameters (Å, º) top
C1—O11.213 (3)C8—H8A0.9900
C1—O21.339 (5)C8—H8B0.9900
C1—C21.475 (3)C9—O41.201 (3)
C1—H10.9500C9—O51.329 (3)
C2—C31.395 (3)C10—C11B1.392 (11)
C2—C71.409 (3)C10—O51.452 (3)
C3—C41.377 (3)C10—C11A1.555 (10)
C3—H30.9500C10—H10A0.9900
C4—C51.388 (3)C10—H10B0.9900
C4—H40.9500C11A—H11A0.9800
C5—C61.389 (3)C11A—H11B0.9800
C5—H50.9500C11A—H11C0.9800
C6—C71.380 (3)C11B—H11D0.9800
C6—H60.9500C11B—H11E0.9800
C7—O31.369 (3)C11B—H11F0.9800
C8—O31.422 (2)O2—H20.9903
C8—C91.500 (3)
O1—C1—O2113.7 (3)O4—C9—O5125.2 (2)
O1—C1—C2123.5 (2)O4—C9—C8125.47 (19)
O2—C1—C2122.2 (3)O5—C9—C8109.36 (17)
O1—C1—H1117.9C11B—C10—O5112.2 (5)
C2—C1—H1118.6C11B—C10—C11A26.8 (9)
C3—C2—C7118.5 (2)O5—C10—C11A103.7 (4)
C3—C2—C1119.8 (2)C11B—C10—H10A125.6
C7—C2—C1121.7 (2)O5—C10—H10A111.0
C4—C3—C2121.2 (2)C11A—C10—H10A111.0
C4—C3—H3119.4C11B—C10—H10B84.4
C2—C3—H3119.4O5—C10—H10B111.0
C3—C4—C5119.3 (2)C11A—C10—H10B111.0
C3—C4—H4120.3H10A—C10—H10B109.0
C5—C4—H4120.3C10—C11A—H11A109.5
C4—C5—C6121.0 (2)C10—C11A—H11B109.5
C4—C5—H5119.5H11A—C11A—H11B109.5
C6—C5—H5119.5C10—C11A—H11C109.5
C7—C6—C5119.3 (2)H11A—C11A—H11C109.5
C7—C6—H6120.4H11B—C11A—H11C109.5
C5—C6—H6120.4C10—C11B—H11D109.5
O3—C7—C6124.01 (18)C10—C11B—H11E109.5
O3—C7—C2115.30 (19)H11D—C11B—H11E109.5
C6—C7—C2120.7 (2)C10—C11B—H11F109.5
O3—C8—C9106.51 (17)H11D—C11B—H11F109.5
O3—C8—H8A110.4H11E—C11B—H11F109.5
C9—C8—H8A110.4C1—O2—H2116.0
O3—C8—H8B110.4C7—O3—C8118.48 (17)
C9—C8—H8B110.4C9—O5—C10115.81 (18)
H8A—C8—H8B108.6
O1—C1—C2—C310.7 (3)C1—C2—C7—O30.7 (3)
O2—C1—C2—C3179.3 (3)C3—C2—C7—C61.3 (3)
O1—C1—C2—C7170.1 (2)C1—C2—C7—C6179.48 (19)
O2—C1—C2—C70.0 (4)O3—C8—C9—O48.5 (3)
C7—C2—C3—C40.0 (3)O3—C8—C9—O5172.12 (16)
C1—C2—C3—C4179.2 (2)C6—C7—O3—C81.0 (3)
C2—C3—C4—C50.5 (3)C2—C7—O3—C8179.79 (18)
C3—C4—C5—C60.3 (3)C9—C8—O3—C7179.91 (17)
C4—C5—C6—C71.6 (3)O4—C9—O5—C100.8 (3)
C5—C6—C7—O3179.22 (18)C8—C9—O5—C10179.85 (18)
C5—C6—C7—C22.1 (3)C11B—C10—O5—C9169.3 (15)
C3—C2—C7—O3179.91 (18)C11A—C10—O5—C9163.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.991.702.497 (5)134
O2—H2···O40.992.503.395 (5)151
C6—H6···O1i0.952.563.504 (3)174
C8—H8B···O4ii0.992.433.354 (3)155
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the EPSRC National Crystallographic Service, University of Southampton, for the X-ray data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMulcahy, M. F. R. & Watt, I. C. (1952). Proc. R. Soc. London Ser. A, 211, 10–29.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilliamson, C., Storey, J. M. D. & Harrison, W. T. A. (2005). Acta Cryst. E61, o1566–o1568.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds