organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­benzyl 5-oxo-2-(2-oxopiperidin-1-yl)tetra­hydro­furan-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, England, and cChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: delphine.fischer@chem.ox.ac.uk

(Received 30 January 2007; accepted 21 February 2007; online 28 February 2007)

The title compound, C17H18N2O7, is a synthetic racemic analogue of lactivicin, a natural product anti­biotic that targets penicillin-binding proteins. There are two almost identical mol­ecules in the asymmetric unit.

Comment

Lactivicin [LTV, (1)[link]] is a natural product anti­biotic that targets penicillin-binding proteins (PBPs), a class of enzymes involved in the final steps of bacterial cell wall biosynthesis (Nozaki et al., 1987[Nozaki, Y., Katayama, N., Ono, H., Tsubotani, S., Harada, S., Okazaki, H. & Nakao, Y. (1987). Nature (London), 325, 179-180.], 1989[Nozaki, Y., Katayama, N., Harada, S., Ono, H. & Okazaki, H. (1989). J. Antibiot., 42, 84-93.]). As part of a research programme aimed at identifying new anti­biotics, we are inter­ested in anti­biotics that do not possess a β-lactam ring. We have prepared an LTV analogue from the title compound, (2)[link], where a six-membered cyclic hydroxamate unit acts as a surrogate of the naturally occurring isoxazolidine-3-one core (Wolfe, Akuche et al., 2003[Wolfe, S., Akuche, C., Ro, S., Wilson, M. C., Kim, C. K. & Shi, Z. (2003). Can. J. Chem. 81, 915-936.]; Wolfe, Wilson et al., 2003[Wolfe, S., Wilson, M. C., Cheng, M. H., Shustov, G. V. & Akuche, C. (2003). Can. J. Chem. 81, 937-960.]).

[Scheme 1]

The structure of (2)[link] contains two mol­ecules in the asymmetric unit (Fig. 1[link]). Bond lengths and angles are unremarkable, the largest differences from the Mogul norms (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) being for C15—C16 (0.06 Å; Mogul s.u. 0.04 Å) and C18—C171—N12 (5.7°; Mogul s.u. 1.5°).

As is common in Z′ = 2 structures (Collins, 2006[Collins, A. (2006). DPhil Thesis. Oxford University, England.]), one mol­ecule of (2)[link] is well ordered and the other has resolvable disorder. If the minor component of the disorder is selected, the two mol­ecules have very similar geometries (Fig. 2[link]), with the major discrepancy being in the orientation of the nitro group. If this group is also omitted, the two mol­ecules are essentially identical (r.m.s. positional deviation = 0.10 Å, r.m.s. bond length deviation = 0.016 Å and r.m.s. torsion angle deviation = 3.07°) (Collins et al., 2006[Collins, A., Cooper, R. I. & Watkin, D. J. (2006). J. Appl. Cryst. 39, 842-849.]) and related by a pseudo glide plane at (0.42 − x, 0.50 + y, 0.00 + z) (Fig. 3[link]).

There are no hydrogen bonds in the crystal structure of (2)[link], which consists of bilayers with the nitro groups dominating the exposed faces (Fig. 4[link]).

[Figure 1]
Figure 1
The structure of one molecule of the asymmetric unit of the title compound, (2)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2]
Figure 2
A least-squares fit of the minor component of the disordered mol­ecule (blue) to the undisordered mol­ecule. The major differences in conformation are in the nitro group. H atoms have been omitted.
[Figure 3]
Figure 3
A view along the pseudo-glide plane (0.42 − x, 0.50 + y, 0.00 + z) that relates the two independent mol­ecules. C atoms in the independent mol­ecules are coloured green (disordered) and orange.
[Figure 4]
Figure 4
A cross section through the bilayers in the structure of (2)[link]. The inter­face rich in nitro groups lies parallel to ab at c = 0.5.

Experimental

Compound (2)[link] was prepared by coupling δ-valerolactam (300 mg, 3.02 mmol) and 1-(4-nitro­benzyl)-2-oxoglutarate (1.10 g, 3.93 mmol) in the presence of N,N′-dicyclo­hexyl­carbodiimide (811 mg, 3.93 mmol) in CH2Cl2 (15 ml). The reaction mixture was stirred at room temperature under N2 for 18 h, after which H2O (40 ml) and CH2Cl2 (40 ml) were added. The aqueous layer was extracted with CH2Cl2 (100 ml) and the combined organic layers were washed with brine (2 × 40 ml), dried (MgSO4), filtered and concentrated in vacuo. Purification by flash column chromatography (MeOH–CH2Cl2, 1:99 v/v) afforded (2) as a white solid (280 mg, 26%). Suitable crystals were obtained upon recrystallization from MeOH (m.p. 390–391 K).

1H NMR (400 MHz, CDCl3, δ, p.p.m.): 1.83 (4H, m, CH2-4′, CH2-5′), 2.40 (3H, m, CH2-3′, CH-3 or CH-4), 2.64 (1H, m, CH-3 or CH-4), 2.80 (1H, m, CH-3 or CH-4), 3.33 (2H, m, CH-3 or CH-4, CH-6′), 3.49 (1H, m, CH-6′), 5.30 (2H, dd, J = 13.3 and 6.1 Hz, OCH2Ar), 7.50 (2H, d, J = 8.7 Hz, 2 × o-ArH), 8.23 (2H, d, J = 8.7 Hz, 2 × m-ArH); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 20.3 (CH2), 23.0 (CH2), 27.7 (CH2), 31.0 (CH2), 32.7 (CH2), 44.2 (CH2N), 66.4 (CH2Ar), 93.5 (C2), 123.9 (2 × ArCH), 128.3 (2 × ArCH), 142.3 (ArC), 147.8 (ArC), 166.7 (C=O), 171.6 (C=O), 173.8 (C=O); IR (NaCl, ν, cm−1): 1794 (C=O), 1753 (C=O), 1659 (C=O), 1521, 1348; MS m/z (ES+) 385, [M+Na]+; HRMS m/z (ES+): found 363.1180 [M+H]+; C17H19N2O7 requires 363.1187.

Crystal data
  • C17H18N2O7

  • Mr = 362.34

  • Triclinic, [P \overline 1]

  • a = 9.2366 (9) Å

  • b = 12.0658 (10) Å

  • c = 15.0535 (15) Å

  • α = 88.416 (3)°

  • β = 82.933 (3)°

  • γ = 89.663 (7)°

  • V = 1664.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 (2) K

  • 0.65 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.82, Tmax = 1.00

  • 30982 measured reflections

  • 8658 independent reflections

  • 8640 reflections with I > −3σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > −3σ(F2)] = 0.136

  • wR(F2) = 0.310

  • S = 1.01

  • 8640 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Comparison of in-house and National Crystallography Service results

Entries in the rows containing `shifts' are the differences between the results of data set 1 and the corresponding column.

Quantity In-house data set 1 In-house data set 2 NCS data set
diffrn_measured_fraction_theta_full 0.77 0.95 0.98
Reflections in refinement 5596 7047 8640
Data collection (h) 20 21 3
Temperature (K) 150 200 200
R(2σ) 0.125 0.095 0.110
wR(all) 0.273 0.261 0.311
θmax (°) 27.5 27.6 29.3
Occupancy of C160 and C170 0.682 (10) 0.679 (9) 0.665 (9)
Twin fraction 0.838 (8) 0.842 (7) 0.709 (5)
Mean shift in atomic coordinate (Å)   0.01 0.02
r.m.s. shift in atomic coordinate (Å)   0.01 0.02
Maximum shift (Å)   C171, 0.025 (1) O102, 0.042 (1)
Maximum Mogul discrepancies      
(Mogul s.u. in parentheses)      
C18—C171—N12 angle (°) 6.17 (1.46) 6.32 (1.46) 5.75 (1.46)
C15—C161 bond length (Å) 0.07 (4) 0.05 (4) 0.06 (4)

Compound (2)[link] crystallizes as thin plates which are always twinned. Initial structure determination and refinement were from data collected on an in-house Nonius KappaCCD diffractometer using a sealed-tube source (data set 1 in Table 1[link]). The low completeness even at θ = 25° generated two level A checkCIF alerts. We were advised to obtain new data from the UK EPSRC National Crystallography Service (NCS) rotating anode diffractometer. A new sample was prepared (also twinned) and a suitable crystal was selected (data set 2 in Table 1[link]). It was observed that the mosaicity deteriorated reversibly on lowering the temperature: the optimal mosaic spread occurred at 200 K. The structure from the NCS data, which generated no level A alerts, is reported in this paper. All three analyses yield the same structural information, although the rotating anode data are undoubtably crystallographically superior (Table 1[link]). The quality of an analysis is undoubtedly limited by the quality of the samples nature provides.

H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically and initially refined with soft restraints on bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å and O—H = 0.82 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The disordered atoms were refined with bond length similarity and anisotropic displacement parameter similarity restraints. C160, C170 and attached H atoms are disordered over two sites, with occupancy factors 0.665(9) and 0.335(9).

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

4-Nitrobenzyl 5-oxo-2-(2-oxopiperidin-1-yl)tetrahydrofuran-2-carboxylate top
Crystal data top
C17H18N2O7Z = 4
Mr = 362.34F(000) = 760
Triclinic, P1Dx = 1.446 Mg m3
a = 9.2366 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0658 (10) ÅCell parameters from 5599 reflections
c = 15.0535 (15) Åθ = 5–27°
α = 88.416 (3)°µ = 0.11 mm1
β = 82.933 (3)°T = 200 K
γ = 89.663 (7)°Plate, colourless
V = 1664.3 (3) Å30.65 × 0.08 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
8640 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 29.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 129
Tmin = 0.82, Tmax = 1.00k = 1616
30982 measured reflectionsl = 2020
8658 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.136H-atom parameters constrained
wR(F2) = 0.310 w = 1/[σ2(F2) + (0.14P)2 + 4.3P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.02(Δ/σ)max = 0.000171
8640 reflectionsΔρmax = 0.88 e Å3
489 parametersΔρmin = 0.55 e Å3
60 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1041.1211 (5)1.1478 (3)0.3709 (3)0.0302
C1261.1137 (5)1.2094 (3)0.2928 (3)0.0342
C1251.0633 (5)1.1573 (3)0.2220 (3)0.0314
C1071.0230 (4)1.0467 (3)0.2283 (2)0.0256
C1061.0328 (5)0.9877 (3)0.3086 (3)0.0335
C1051.0818 (5)1.0383 (3)0.3799 (3)0.0346
C1080.9688 (5)0.9961 (3)0.1490 (3)0.0288
O1090.9525 (3)0.8785 (2)0.16551 (18)0.0279
C1100.8977 (4)0.8250 (3)0.1015 (3)0.0269
O1240.8672 (3)0.8660 (2)0.0324 (2)0.0328
C1110.9033 (4)0.6984 (3)0.1178 (2)0.0257
N1120.8532 (4)0.6651 (3)0.2090 (2)0.0291
C1130.7255 (5)0.7145 (4)0.2461 (3)0.0319
C1150.6619 (6)0.6772 (5)0.3391 (3)0.0448
C1160.6997 (7)0.5576 (6)0.3637 (4)0.0614
C1170.8603 (7)0.5442 (6)0.3454 (4)0.0628
C1180.9129 (6)0.5628 (4)0.2466 (3)0.0419
O1140.6694 (4)0.7894 (3)0.2053 (2)0.0386
C1221.0584 (4)0.6620 (3)0.0798 (3)0.0288
C1211.0447 (5)0.6530 (4)0.0199 (3)0.0330
C1200.8875 (5)0.6341 (3)0.0234 (3)0.0283
O1190.8094 (3)0.6504 (2)0.05860 (18)0.0279
O1230.8271 (4)0.6076 (3)0.0857 (2)0.0375
N1011.1773 (5)1.1992 (3)0.4472 (3)0.0409
O1021.1686 (6)1.1484 (3)0.5184 (2)0.0643
O1031.2341 (5)1.2893 (3)0.4362 (3)0.0591
H12611.14191.28390.28880.0420*
H12511.05731.19780.16860.0397*
H10611.00590.91300.31370.0389*
H10511.08870.99870.43390.0407*
H10811.03721.01170.09490.0362*
H10820.87471.02860.13920.0363*
H11510.69850.72490.38100.0544*
H11520.55630.68440.34190.0539*
H11610.66660.54230.42590.0742*
H11620.65420.50720.32550.0742*
H11710.90700.59850.37930.0746*
H11720.88860.46900.36380.0742*
H11811.01870.56730.23990.0527*
H11820.88200.50210.21080.0529*
H12211.13110.71580.09230.0354*
H12221.08440.58950.10450.0354*
H12111.07130.72300.05040.0403*
H12121.10190.59520.04930.0402*
N10.1649 (5)0.7142 (3)0.4458 (3)0.0460
O20.0978 (6)0.6609 (3)0.5068 (3)0.0647
O30.1849 (7)0.8156 (3)0.4474 (3)0.0775
C40.2346 (5)0.6562 (3)0.3672 (3)0.0330
C50.2574 (5)0.5439 (3)0.3747 (3)0.0336
C60.3308 (5)0.4893 (3)0.3028 (3)0.0305
C70.3788 (4)0.5476 (3)0.2239 (3)0.0257
C80.4643 (5)0.4938 (3)0.1450 (3)0.0277
O90.4762 (3)0.3770 (2)0.16513 (18)0.0277
C100.5603 (4)0.3223 (3)0.1028 (3)0.0258
C110.5518 (4)0.1965 (3)0.1211 (2)0.0248
N120.5677 (4)0.1641 (3)0.2127 (2)0.0302
C130.6698 (5)0.2216 (4)0.2520 (3)0.0334
O140.7412 (4)0.2956 (3)0.2108 (2)0.0400
C150.6893 (6)0.1921 (5)0.3482 (3)0.0478
C180.5015 (6)0.0592 (4)0.2490 (3)0.0427
O190.6692 (3)0.1476 (2)0.06104 (18)0.0276
C200.6230 (5)0.1312 (3)0.0202 (3)0.0294
C210.4627 (5)0.1489 (4)0.0147 (3)0.0313
C220.4120 (4)0.1582 (3)0.0856 (3)0.0286
O230.7076 (4)0.1051 (2)0.0832 (2)0.0359
O240.6195 (3)0.3617 (2)0.03365 (19)0.0327
C250.3497 (5)0.6606 (3)0.2169 (3)0.0312
C260.2788 (5)0.7162 (3)0.2889 (3)0.0339
H510.22400.50560.42720.0402*
H610.34970.41290.30720.0378*
H810.56020.52570.13370.0337*
H820.41470.50530.09260.0338*
H1510.65170.25220.38540.0593*
H1520.79270.18510.35410.0590*
H1810.39610.06340.25050.0510*
H1820.53720.00040.20920.0509*
H2110.44470.21780.04710.0391*
H2120.41820.08800.04110.0391*
H2210.37990.08610.11120.0356*
H2220.33290.21120.09820.0361*
H2510.37930.69920.16220.0386*
H2610.26230.79280.28540.0420*
C1600.5793 (10)0.1121 (7)0.3972 (5)0.05160.665 (9)
C1700.5749 (11)0.0176 (6)0.3322 (5)0.05070.665 (9)
H16010.60950.08650.45380.0612*0.665 (9)
H16020.48480.14840.40690.0610*0.665 (9)
H17010.51800.04290.36170.0603*0.665 (9)
H17020.67280.00780.31340.0598*0.665 (9)
C1610.6519 (17)0.0660 (9)0.3702 (11)0.05180.335 (9)
C1710.4986 (17)0.0390 (14)0.3510 (7)0.04800.335 (9)
H16110.66040.04960.43280.0620*0.335 (9)
H16120.72010.02000.33290.0621*0.335 (9)
H17110.42860.08820.38350.0570*0.335 (9)
H17120.47350.03720.36790.0572*0.335 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1040.035 (2)0.0268 (18)0.0280 (19)0.0041 (15)0.0014 (15)0.0066 (15)
C1260.041 (2)0.0238 (18)0.037 (2)0.0074 (16)0.0013 (18)0.0004 (16)
C1250.040 (2)0.0257 (18)0.0279 (19)0.0029 (16)0.0048 (16)0.0083 (15)
C1070.0291 (19)0.0231 (17)0.0235 (17)0.0031 (13)0.0007 (14)0.0024 (13)
C1060.051 (3)0.0188 (17)0.031 (2)0.0022 (16)0.0066 (18)0.0055 (15)
C1050.050 (3)0.0257 (19)0.0271 (19)0.0020 (17)0.0012 (17)0.0011 (15)
C1080.038 (2)0.0202 (16)0.0281 (19)0.0021 (14)0.0057 (16)0.0036 (14)
O1090.0368 (16)0.0221 (12)0.0255 (13)0.0021 (10)0.0076 (11)0.0023 (10)
C1100.0243 (19)0.0300 (18)0.0262 (18)0.0011 (14)0.0024 (14)0.0032 (14)
O1240.0407 (17)0.0284 (14)0.0307 (15)0.0028 (12)0.0123 (12)0.0069 (11)
C1110.0273 (19)0.0265 (17)0.0236 (17)0.0026 (14)0.0057 (14)0.0012 (14)
N1120.0368 (19)0.0272 (16)0.0236 (15)0.0036 (13)0.0064 (13)0.0048 (12)
C1130.031 (2)0.039 (2)0.0256 (19)0.0077 (16)0.0051 (15)0.0020 (16)
C1150.039 (3)0.066 (3)0.029 (2)0.005 (2)0.0027 (18)0.005 (2)
C1160.056 (3)0.081 (4)0.047 (3)0.018 (3)0.010 (3)0.029 (3)
C1170.060 (4)0.079 (4)0.047 (3)0.004 (3)0.006 (3)0.036 (3)
C1180.052 (3)0.038 (2)0.037 (2)0.002 (2)0.010 (2)0.0157 (19)
O1140.0356 (17)0.0427 (17)0.0361 (16)0.0034 (13)0.0004 (13)0.0035 (13)
C1220.028 (2)0.0312 (19)0.0280 (19)0.0028 (15)0.0081 (15)0.0009 (15)
C1210.031 (2)0.037 (2)0.030 (2)0.0030 (16)0.0049 (16)0.0012 (16)
C1200.038 (2)0.0206 (16)0.0264 (18)0.0007 (14)0.0058 (15)0.0016 (14)
O1190.0269 (14)0.0293 (13)0.0281 (14)0.0042 (10)0.0061 (11)0.0014 (11)
O1230.0428 (18)0.0380 (16)0.0338 (16)0.0021 (13)0.0123 (13)0.0028 (13)
N1010.057 (3)0.0347 (19)0.0304 (19)0.0113 (17)0.0030 (17)0.0016 (15)
O1020.111 (4)0.051 (2)0.0343 (19)0.029 (2)0.021 (2)0.0071 (16)
O1030.090 (3)0.041 (2)0.048 (2)0.027 (2)0.017 (2)0.0016 (16)
N10.065 (3)0.042 (2)0.033 (2)0.023 (2)0.0112 (19)0.0071 (17)
O20.096 (3)0.057 (2)0.0348 (19)0.013 (2)0.016 (2)0.0009 (17)
O30.142 (5)0.038 (2)0.052 (2)0.026 (2)0.004 (3)0.0106 (18)
C40.044 (2)0.0278 (19)0.0278 (19)0.0083 (16)0.0061 (17)0.0037 (15)
C50.046 (3)0.0283 (19)0.0253 (19)0.0010 (17)0.0015 (17)0.0018 (15)
C60.041 (2)0.0206 (17)0.0288 (19)0.0016 (15)0.0021 (16)0.0010 (14)
C70.0268 (19)0.0237 (17)0.0272 (18)0.0021 (13)0.0066 (14)0.0017 (14)
C80.035 (2)0.0193 (16)0.0277 (18)0.0001 (14)0.0015 (15)0.0014 (14)
O90.0320 (15)0.0224 (12)0.0274 (13)0.0021 (10)0.0010 (11)0.0011 (10)
C100.0269 (19)0.0241 (17)0.0265 (18)0.0001 (13)0.0036 (14)0.0013 (14)
C110.0281 (19)0.0241 (17)0.0215 (17)0.0019 (13)0.0002 (13)0.0011 (13)
N120.042 (2)0.0237 (15)0.0242 (16)0.0008 (13)0.0041 (14)0.0044 (12)
C130.035 (2)0.034 (2)0.030 (2)0.0067 (16)0.0052 (16)0.0029 (16)
O140.0377 (18)0.0494 (19)0.0343 (16)0.0076 (14)0.0120 (13)0.0063 (14)
C150.051 (3)0.063 (3)0.030 (2)0.004 (2)0.0130 (19)0.010 (2)
C180.059 (3)0.032 (2)0.035 (2)0.0019 (19)0.000 (2)0.0128 (17)
O190.0279 (14)0.0290 (13)0.0259 (13)0.0048 (10)0.0030 (10)0.0012 (10)
C200.043 (2)0.0185 (16)0.0262 (18)0.0022 (14)0.0023 (16)0.0042 (14)
C210.031 (2)0.035 (2)0.0289 (19)0.0006 (16)0.0072 (15)0.0010 (16)
C220.028 (2)0.0272 (18)0.0294 (19)0.0018 (14)0.0000 (15)0.0025 (15)
O230.0420 (18)0.0325 (15)0.0309 (15)0.0018 (12)0.0054 (13)0.0014 (12)
O240.0388 (17)0.0288 (14)0.0284 (14)0.0001 (12)0.0025 (12)0.0069 (11)
C250.039 (2)0.0276 (19)0.0270 (19)0.0011 (16)0.0061 (16)0.0048 (15)
C260.039 (2)0.0237 (18)0.040 (2)0.0069 (16)0.0107 (18)0.0008 (16)
C1600.062 (4)0.063 (4)0.028 (3)0.003 (3)0.000 (3)0.009 (3)
C1700.070 (4)0.044 (3)0.035 (3)0.001 (3)0.001 (3)0.015 (2)
C1610.061 (5)0.064 (4)0.030 (4)0.001 (4)0.006 (4)0.015 (4)
C1710.062 (5)0.043 (4)0.036 (3)0.001 (4)0.002 (4)0.016 (4)
Geometric parameters (Å, º) top
C104—C1261.382 (6)C5—H510.925
C104—C1051.371 (5)C6—C71.389 (5)
C104—N1011.471 (5)C6—H610.939
C126—C1251.383 (6)C7—C81.505 (5)
C126—H12610.935C7—C251.391 (5)
C125—C1071.385 (5)C8—O91.440 (4)
C125—H12510.937C8—H810.962
C107—C1061.398 (5)C8—H820.966
C107—C1081.496 (5)O9—C101.329 (5)
C106—C1051.375 (6)C10—C111.536 (5)
C106—H10610.934C10—O241.202 (5)
C105—H10510.940C11—N121.447 (5)
C108—O1091.439 (4)C11—O191.457 (4)
C108—H10810.982C11—C221.536 (6)
C108—H10820.977N12—C131.374 (6)
O109—C1101.326 (5)N12—C181.471 (5)
C110—O1241.204 (5)C13—O141.223 (5)
C110—C1111.542 (5)C13—C151.513 (6)
C111—N1121.441 (5)C15—H1510.965
C111—C1221.542 (6)C15—H1520.973
C111—O1191.451 (4)C15—C1601.515 (7)
N112—C1131.380 (6)C15—H1510.965
N112—C1181.476 (5)C15—H1520.973
C113—C1151.509 (6)C15—C1611.579 (9)
C113—O1141.227 (5)C18—H1810.972
C115—C1161.528 (8)C18—H1820.971
C115—H11510.957C18—C1701.565 (7)
C115—H11520.974C18—H1810.972
C116—C1171.483 (9)C18—H1820.971
C116—H11610.961C18—C1711.545 (9)
C116—H11620.981O19—C201.364 (5)
C117—C1181.518 (7)C20—C211.487 (6)
C117—H11710.976C20—O231.200 (5)
C117—H11720.984C21—C221.531 (6)
C118—H11810.972C21—H2110.975
C118—H11820.985C21—H2120.964
C122—C1211.527 (6)C22—H2210.975
C122—H12210.975C22—H2220.972
C122—H12220.981C25—C261.384 (6)
C121—C1201.479 (6)C25—H2510.945
C121—H12110.969C26—H2610.937
C121—H12120.958C160—C1701.526 (8)
C120—O1191.369 (5)C160—H16010.971
C120—O1231.201 (5)C160—H16020.971
N101—O1021.213 (5)C170—H17010.967
N101—O1031.208 (5)C170—H17020.965
N1—O21.213 (6)C161—C1711.519 (9)
N1—O31.240 (6)C161—H16110.971
N1—C41.469 (6)C161—H16120.972
C4—C51.373 (6)C171—H17110.971
C4—C261.385 (6)C171—H17120.969
C5—C61.385 (6)
C126—C104—C105122.6 (4)C6—C7—C8122.5 (3)
C126—C104—N101119.6 (4)C6—C7—C25119.6 (4)
C105—C104—N101117.8 (4)C8—C7—C25117.8 (3)
C104—C126—C125117.8 (4)C7—C8—O9108.5 (3)
C104—C126—H1261120.5C7—C8—H81110.0
C125—C126—H1261121.7O9—C8—H81109.5
C126—C125—C107121.4 (4)C7—C8—H82109.6
C126—C125—H1251119.0O9—C8—H82110.0
C107—C125—H1251119.6H81—C8—H82109.1
C125—C107—C106118.8 (4)C8—O9—C10113.8 (3)
C125—C107—C108118.4 (3)O9—C10—C11111.4 (3)
C106—C107—C108122.8 (3)O9—C10—O24125.7 (3)
C107—C106—C105120.7 (4)C11—C10—O24122.1 (3)
C107—C106—H1061119.6C10—C11—N12113.6 (3)
C105—C106—H1061119.7C10—C11—O19106.4 (3)
C106—C105—C104118.8 (4)N12—C11—O19109.6 (3)
C106—C105—H1051120.8C10—C11—C22105.9 (3)
C104—C105—H1051120.4N12—C11—C22116.3 (3)
C107—C108—O109109.0 (3)O19—C11—C22104.2 (3)
C107—C108—H1081110.0C11—N12—C13116.0 (3)
O109—C108—H1081110.8C11—N12—C18118.4 (3)
C107—C108—H1082110.0C13—N12—C18124.0 (3)
O109—C108—H1082109.6N12—C13—O14120.8 (4)
H1081—C108—H1082107.4N12—C13—C15118.2 (4)
C108—O109—C110114.6 (3)O14—C13—C15121.0 (4)
O109—C110—O124125.6 (4)C13—C15—H151108.6
O109—C110—C111111.3 (3)C13—C15—H152109.7
O124—C110—C111122.2 (4)H151—C15—H152107.1
C110—C111—N112112.9 (3)C13—C15—C160116.3 (5)
C110—C111—C122105.9 (3)H151—C15—C16091.5
N112—C111—C122117.1 (3)H152—C15—C160120.9
C110—C111—O119106.4 (3)C13—C15—H151108.6
N112—C111—O119109.4 (3)C13—C15—H152109.7
C122—C111—O119104.4 (3)H151—C15—H152107.1
C111—N112—C113115.6 (3)C13—C15—C161110.5 (7)
C111—N112—C118118.9 (4)H151—C15—C161124.0
C113—N112—C118123.1 (4)H152—C15—C16195.6
N112—C113—C115118.1 (4)N12—C18—H181109.7
N112—C113—O114120.4 (4)N12—C18—H182108.2
C115—C113—O114121.5 (4)H181—C18—H182108.2
C113—C115—C116114.1 (5)N12—C18—C170110.4 (5)
C113—C115—H1151108.1H181—C18—C170121.7
C116—C115—H1151108.2H182—C18—C17097.2
C113—C115—H1152106.8N12—C18—H181109.7
C116—C115—H1152109.1N12—C18—H182108.2
H1151—C115—H1152110.6H181—C18—H182108.2
C115—C116—C117108.0 (5)N12—C18—C171115.9 (7)
C115—C116—H1161109.7H181—C18—C17195.0
C117—C116—H1161110.7H182—C18—C171118.7
C115—C116—H1162109.2C11—O19—C20109.7 (3)
C117—C116—H1162108.2O19—C20—C21110.2 (3)
H1161—C116—H1162110.8O19—C20—O23120.7 (4)
C116—C117—C118111.2 (5)C21—C20—O23129.1 (4)
C116—C117—H1171108.9C20—C21—C22104.5 (3)
C118—C117—H1171108.6C20—C21—H211108.5
C116—C117—H1172110.0C22—C21—H211111.1
C118—C117—H1172108.9C20—C21—H212109.9
H1171—C117—H1172109.3C22—C21—H212112.9
C117—C118—N112112.8 (5)H211—C21—H212109.6
C117—C118—H1181107.8C11—C22—C21101.9 (3)
N112—C118—H1181109.2C11—C22—H221111.6
C117—C118—H1182111.3C21—C22—H221110.1
N112—C118—H1182105.7C11—C22—H222111.6
H1181—C118—H1182110.0C21—C22—H222112.9
C111—C122—C121102.0 (3)H221—C22—H222108.7
C111—C122—H1221111.3C7—C25—C26120.6 (4)
C121—C122—H1221113.5C7—C25—H251119.2
C111—C122—H1222112.0C26—C25—H251120.2
C121—C122—H1222109.8C4—C26—C25118.4 (4)
H1221—C122—H1222108.3C4—C26—H261120.5
C122—C121—C120104.5 (3)C25—C26—H261121.1
C122—C121—H1211109.5C15—C160—C170103.8 (6)
C120—C121—H1211108.3C15—C160—H1601111.2
C122—C121—H1212114.8C170—C160—H1601111.8
C120—C121—H1212110.7C15—C160—H1602109.1
H1211—C121—H1212108.8C170—C160—H1602110.2
C121—C120—O119110.6 (3)H1601—C160—H1602110.5
C121—C120—O123128.8 (4)C160—C170—C18109.5 (6)
O119—C120—O123120.5 (4)C160—C170—H1701109.4
C111—O119—C120109.5 (3)C18—C170—H1701108.9
C104—N101—O102118.9 (4)C160—C170—H1702109.6
C104—N101—O103118.8 (4)C18—C170—H1702110.0
O102—N101—O103122.2 (4)H1701—C170—H1702109.5
O2—N1—O3123.7 (4)C15—C161—C171111.2 (10)
O2—N1—C4119.1 (4)C15—C161—H1611109.3
O3—N1—C4117.0 (4)C171—C161—H1611109.4
N1—C4—C5118.6 (4)C15—C161—H1612109.2
N1—C4—C26119.4 (4)C171—C161—H1612108.2
C5—C4—C26122.0 (4)H1611—C161—H1612109.5
C4—C5—C6119.2 (4)C18—C171—C161104.8 (10)
C4—C5—H51120.1C18—C171—H1711110.4
C6—C5—H51120.7C161—C171—H1711110.0
C5—C6—C7120.1 (4)C18—C171—H1712111.0
C5—C6—H61120.4C161—C171—H1712111.2
C7—C6—H61119.5H1711—C171—H1712109.3
Comparison of in-house and NCS results. Entries in the rows containing 'shifts' are the differences between the results of data set 1 and the corresponding column top
QuantityIn-house set 1In-house set 2NCS data
diffrn_measured_fraction_theta_full0.770.950.98
Reflections in refinement559670478640
Data collection/h20213
Temperature/K150200200
R(2σ)/%12.539.4710.98
wR(all)/%27.326.131.05
θmax27.527.629.3
Occupancy of C160 and C1700.682 (10)0.679 (9)0.665 (9)
Twin fraction0.838 (8)0.842 (7)0.709 (5)
Mean shift in atomic coordinate/Å0.010.02
RMS shift in atomic coordinate/Å0.010.02
Maximum shift/ÅC171, 0.025 (1)O102, 0.042 (1)
Maximum MOGUL discrepancies
(MOGUL s.u. in parentheses)
C18—C171—N12 angle/°6.17(1.46)6.32(1.46)5.75(1.46)
C15—C161 bond length/Å0.07 (4)0.05 (4)0.06 (4)
 

Acknowledgements

The authors gratefully acknowledge the effort of the EPSRC National Crystallography Service for collecting data from this difficult sample. We acknowledge the MRC for a Capacity Building Studentship to SJS and the European Union for funding to DSF through the FP6 Integrated Project EUR-INTAFAR (Project No. LSHM-CT-2004-512138) under the thematic priority Life Sciences, Genomics and Biotechnology for Health.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCollins, A. (2006). DPhil Thesis. Oxford University, England.  Google Scholar
First citationCollins, A., Cooper, R. I. & Watkin, D. J. (2006). J. Appl. Cryst. 39, 842–849.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNozaki, Y., Katayama, N., Harada, S., Ono, H. & Okazaki, H. (1989). J. Antibiot., 42, 84–93.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNozaki, Y., Katayama, N., Ono, H., Tsubotani, S., Harada, S., Okazaki, H. & Nakao, Y. (1987). Nature (London), 325, 179–180.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWolfe, S., Akuche, C., Ro, S., Wilson, M. C., Kim, C. K. & Shi, Z. (2003). Can. J. Chem. 81, 915–936.  Web of Science CrossRef CAS Google Scholar
First citationWolfe, S., Wilson, M. C., Cheng, M. H., Shustov, G. V. & Akuche, C. (2003). Can. J. Chem. 81, 937–960.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds