Download citation
Download citation
link to html
The title compound, [Cu(CH3CO2)2(C9H7N3O)2(H2O)], is a mononuclear complex in which the CuII atom assumes a square-pyramidal coordination geometry. The Cu atom and the aqua O atom lie on a crystallographic twofold rotation axis. In the crystal structure, there are hydrogen bonds and π–π stacking inter­actions between neighboring mol­ecules, which stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807007416/hy2044sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807007416/hy2044Isup2.hkl
Contains datablock I

CCDC reference: 640373

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.057
  • wR factor = 0.122
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Bis(acetato-κO)aquabis[3-(pyrazin-2-yloxy)pyridine-κN]copper(II) top
Crystal data top
[Cu(C2H3O2)2(C9H7N3O)2(H2O)]F(000) = 1124
Mr = 546.00Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 580 reflections
a = 18.472 (7) Åθ = 3.5–20.5°
b = 5.824 (2) ŵ = 0.98 mm1
c = 23.788 (9) ÅT = 298 K
β = 112.612 (6)°Rectangle, blue
V = 2362.3 (16) Å30.30 × 0.18 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2313 independent reflections
Radiation source: fine-focus sealed tube1642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1522
Tmin = 0.757, Tmax = 0.971k = 67
6119 measured reflectionsl = 2927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
2313 reflections(Δ/σ)max = 0.002
165 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = 0.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.51742 (11)0.25000.0280 (2)
O40.12106 (16)0.0983 (4)0.10959 (11)0.0353 (7)
N10.07786 (18)0.4952 (5)0.20885 (13)0.0295 (8)
O20.08548 (16)0.5001 (5)0.17094 (12)0.0394 (7)
C40.1282 (2)0.2935 (6)0.14514 (16)0.0275 (9)
N20.0929 (2)0.3310 (5)0.02477 (14)0.0339 (9)
C80.1027 (2)0.1256 (6)0.04844 (17)0.0265 (9)
N30.0775 (2)0.0673 (6)0.04421 (15)0.0388 (9)
O10.12583 (18)0.1475 (5)0.18076 (14)0.0530 (9)
C90.0951 (2)0.0738 (7)0.01474 (18)0.0307 (9)
H90.10260.21520.03430.037*
C100.0679 (3)0.1422 (7)0.0695 (2)0.0441 (12)
H100.05630.15550.11110.053*
C30.0730 (2)0.3247 (6)0.17017 (16)0.0287 (9)
H30.03090.22340.15980.034*
C110.0749 (3)0.3366 (7)0.03560 (18)0.0428 (12)
H110.06690.47830.05510.051*
C50.1910 (2)0.4386 (7)0.16025 (17)0.0350 (10)
H50.22930.41820.14430.042*
C70.1958 (2)0.6165 (7)0.19992 (18)0.0387 (11)
H70.23720.72020.21080.046*
C60.1388 (2)0.6380 (7)0.22309 (17)0.0346 (10)
H60.14280.75760.25000.042*
C20.1335 (2)0.3332 (8)0.15370 (18)0.0333 (10)
O30.00000.8992 (7)0.25000.0519 (12)
H10.03770.98670.27590.078*
C10.2049 (2)0.3719 (9)0.0968 (2)0.0551 (14)
H1A0.21260.24240.07020.083*
H1B0.19790.50790.07670.083*
H1C0.25000.39030.10720.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (4)0.0290 (4)0.0262 (4)0.0000.0122 (3)0.000
O40.0510 (19)0.0283 (15)0.0294 (15)0.0028 (14)0.0185 (14)0.0005 (13)
N10.0300 (19)0.0332 (19)0.0249 (16)0.0043 (17)0.0103 (14)0.0019 (16)
O20.0356 (17)0.0519 (19)0.0283 (14)0.0099 (16)0.0097 (13)0.0019 (14)
C40.036 (2)0.024 (2)0.022 (2)0.0044 (19)0.0104 (18)0.0027 (17)
N20.049 (2)0.0246 (19)0.0309 (19)0.0012 (16)0.0179 (17)0.0017 (15)
C80.022 (2)0.029 (2)0.027 (2)0.0007 (18)0.0086 (17)0.0023 (18)
N30.051 (2)0.031 (2)0.037 (2)0.0017 (17)0.0199 (18)0.0046 (16)
O10.045 (2)0.0390 (19)0.059 (2)0.0018 (15)0.0027 (17)0.0069 (17)
C90.033 (2)0.022 (2)0.036 (2)0.0014 (18)0.0129 (19)0.0017 (18)
C100.063 (3)0.038 (3)0.033 (2)0.008 (2)0.021 (2)0.004 (2)
C30.032 (2)0.030 (2)0.023 (2)0.0063 (18)0.0077 (18)0.0002 (17)
C110.066 (3)0.029 (2)0.032 (2)0.004 (2)0.019 (2)0.003 (2)
C50.036 (3)0.043 (3)0.031 (2)0.004 (2)0.019 (2)0.0050 (19)
C70.035 (3)0.044 (3)0.039 (2)0.014 (2)0.016 (2)0.003 (2)
C60.044 (3)0.035 (2)0.027 (2)0.005 (2)0.015 (2)0.0078 (19)
C20.023 (2)0.049 (3)0.029 (2)0.007 (2)0.0112 (19)0.001 (2)
O30.043 (3)0.027 (2)0.068 (3)0.0000.002 (2)0.000
C10.032 (3)0.077 (4)0.048 (3)0.000 (3)0.006 (2)0.010 (3)
Geometric parameters (Å, º) top
Cu1—O21.938 (3)O1—C21.239 (5)
Cu1—O2i1.938 (3)C9—H90.9300
Cu1—N1i2.031 (3)C10—C111.367 (6)
Cu1—N12.031 (3)C10—H100.9300
Cu1—O32.223 (4)C3—H30.9300
O4—C81.370 (4)C11—H110.9300
O4—C41.393 (4)C5—C71.381 (6)
N1—C31.333 (4)C5—H50.9300
N1—C61.334 (5)C7—C61.369 (5)
O2—C21.273 (5)C7—H70.9300
C4—C51.367 (5)C6—H60.9300
C4—C31.377 (5)C2—C11.500 (5)
N2—C81.305 (5)O3—H10.8908
N2—C111.344 (5)C1—H1A0.9600
C8—C91.387 (5)C1—H1B0.9600
N3—C91.313 (5)C1—H1C0.9600
N3—C101.342 (5)
O2—Cu1—O2i174.04 (17)N3—C10—H10119.3
O2—Cu1—N1i90.04 (12)C11—C10—H10119.3
O2i—Cu1—N1i89.59 (12)N1—C3—C4122.2 (4)
O2—Cu1—N189.59 (12)N1—C3—H3118.9
O2i—Cu1—N190.04 (12)C4—C3—H3118.9
N1i—Cu1—N1172.71 (18)N2—C11—C10122.6 (4)
O2—Cu1—O392.98 (9)N2—C11—H11118.7
O2i—Cu1—O392.98 (9)C10—C11—H11118.7
N1i—Cu1—O393.65 (9)C4—C5—C7117.9 (4)
N1—Cu1—O393.65 (9)C4—C5—H5121.0
C8—O4—C4118.5 (3)C7—C5—H5121.0
C3—N1—C6117.7 (3)C6—C7—C5119.1 (4)
C3—N1—Cu1120.5 (3)C6—C7—H7120.4
C6—N1—Cu1121.5 (3)C5—C7—H7120.4
C2—O2—Cu1124.0 (3)N1—C6—C7123.0 (4)
C5—C4—C3120.0 (4)N1—C6—H6118.5
C5—C4—O4122.5 (4)C7—C6—H6118.5
C3—C4—O4117.2 (3)O1—C2—O2124.9 (4)
C8—N2—C11114.8 (3)O1—C2—C1119.1 (4)
N2—C8—O4120.1 (3)O2—C2—C1116.0 (4)
N2—C8—C9123.5 (4)Cu1—O3—H1124.9
O4—C8—C9116.4 (3)C2—C1—H1A109.5
C9—N3—C10116.2 (3)C2—C1—H1B109.5
N3—C9—C8121.4 (4)H1A—C1—H1B109.5
N3—C9—H9119.3C2—C1—H1C109.5
C8—C9—H9119.3H1A—C1—H1C109.5
N3—C10—C11121.4 (4)H1B—C1—H1C109.5
O2—Cu1—N1—C353.0 (3)O4—C8—C9—N3179.9 (4)
O2i—Cu1—N1—C3121.0 (3)C9—N3—C10—C111.1 (7)
O3—Cu1—N1—C3146.0 (3)C6—N1—C3—C40.1 (5)
O2—Cu1—N1—C6132.5 (3)Cu1—N1—C3—C4174.8 (3)
O2i—Cu1—N1—C653.5 (3)C5—C4—C3—N10.7 (6)
O3—Cu1—N1—C639.5 (3)O4—C4—C3—N1174.5 (3)
N1i—Cu1—O2—C258.9 (3)C8—N2—C11—C100.4 (7)
N1—Cu1—O2—C2113.9 (3)N3—C10—C11—N21.2 (7)
O3—Cu1—O2—C2152.5 (3)C3—C4—C5—C71.2 (6)
C8—O4—C4—C573.5 (5)O4—C4—C5—C7174.6 (3)
C8—O4—C4—C3112.9 (4)C4—C5—C7—C61.1 (6)
C11—N2—C8—O4179.9 (4)C3—N1—C6—C70.1 (6)
C11—N2—C8—C90.3 (6)Cu1—N1—C6—C7174.6 (3)
C4—O4—C8—N20.5 (5)C5—C7—C6—N10.5 (6)
C4—O4—C8—C9179.1 (3)Cu1—O2—C2—O111.0 (6)
C10—N3—C9—C80.4 (6)Cu1—O2—C2—C1167.8 (3)
N2—C8—C9—N30.3 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1ii0.891.822.695 (4)168
Symmetry code: (ii) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds